scispace - formally typeset
Search or ask a question
Institution

Nanjing University

EducationNanjing, China
About: Nanjing University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 85961 authors who have published 105504 publications receiving 2289036 citations. The organization is also known as: NJU & Nanking University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe spin selective Andreev reflection (SSAR) of MZMs in a topological superconductor of the Bi-Te-3/NbSe-2 heterostructure.
Abstract: Recently, theory has predicted a Majorana zero mode (MZM) to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MZM. Here, spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe SSAR of MZMs in a topological superconductor of the Bi_{2}Te_{3}/NbSe_{2} heterostructure. The zero-bias peak of the tunneling differential conductance at the vortex center is observed substantially higher when the tip polarization and the external magnetic field are parallel rather than antiparallel to each other. This spin dependent tunneling effect provides direct evidence of MZM and reveals its magnetic property in addition to the zero energy modes. Our work will stimulate MZM research on these novel physical properties and, hence, is a step towards experimental study of their statistics and application in quantum computing.

549 citations

Journal ArticleDOI
TL;DR: In this article, an emerging flux trigger mechanism is proposed for the onset of CMEs, using two-dimensional magnetohydrodynamic (MHD) numerical simulations: when such emerging flux emerges within the filament channel, it cancels the magnetic field below the flux rope, leading to the rise of the flux ropes and the formation of a current sheet below it.
Abstract: Observations indicate that reconnection-favored emerging flux has a strong correlation with coronal mass ejectons (CMEs). Motivated by this observed correlation and based on the flux rope model, an emerging flux trigger mechanism is proposed for the onset of CMEs, using two-dimensional magnetohydrodynamic (MHD) numerical simulations: when such emerging flux emerges within the filament channel, it cancels the magnetic field below the flux rope, leading to the rise of the flux rope (owing to loss of equilibrium) and the formation of a current sheet below it. Similar global restructuring and a resulting rise motion of the flux rope occur also when reconnection-favored emerging flux appears on the outer edge of the filament channel. In either case, fast magnetic reconnection in the current sheet below the flux rope induces fast ejection of the flux rope (i.e., CME). It is also shown that the nonreconnecting emerging flux, either within the filament channel or on the outer edge of the channel, makes the flux rope move down, i.e., no CMEs can be triggered. Although the present two-dimensional model can not provide many details of the largely unknown three-dimensional processes associated with prominence eruptions, it shows some observational features such as the height-time profile of erupting prominences. Most importantly, our model can well explain the observed correlation between CMEs and the reconnection-favored emerging flux.

546 citations

Journal ArticleDOI
TL;DR: The synergism of large surface area, multiscale porous structure, and good conductivity endows hierarchical carbon nanocages with high-level supercapacitive performances as mentioned in this paper.
Abstract: The synergism of large surface area, multiscale porous structure, and good conductivity endows hierarchical carbon nanocages with high-level supercapacitive performances. Further nitrogen doping greatly improves the hydrophilicity, which boosts the supercapacitive performances to an ultrahigh specific capacitance of up to 313 F g(-1) at 1 A g(-1).

545 citations

Journal ArticleDOI
TL;DR: This review concentrates on various targeting and delivery techniques for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Abstract: Platinum-based anticancer drugs occupy a crucial role in the treatment of various malignant tumours. However, the efficacy and applicability of platinum drugs are heavily restricted by severe systemic toxicities and drug resistance. Different drug targeting and delivery (DTD) strategies have been developed to prevent the shortcomings of platinum-based chemotherapy. These approaches can be roughly categorized into two groups; namely, active and passive tactics. Active DTD is realized through specific molecular interactions between the drugs and cell or tissue elements, while passive DTD is achieved by exploiting the enhanced permeability and retention effect in tumour tissues. The principal methods for active DTD include conjugation of platinum drugs with selective targeting moieties or encapsulation of platinum drugs in host molecules. Bioactive substances such as hormones, carbohydrates, bisphosphonates, peptides and proteins are commonly used in active DTD. Passive DTD generally involves the fabrication of functionalized polymers or nanoparticles and the subsequent conjugation of platinum drugs with such entities. Polymeric micelles, liposomes, nanotubes and nanoparticles are frequently used in passive DTD. In some cases, both active and passive mechanisms are involved in one DTD system. This review concentrates on various targeting and delivery techniques for improving the efficacy and reducing the side effects of platinum-based anticancer drugs. The content covers most of the related literatures published since 2006. These innovative tactics represent current state-of-the-art developments in platinum-based anticancer drugs.

543 citations

Journal ArticleDOI
22 May 2008-Nature
TL;DR: This work reports the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst, and attributes the outburst to the ‘break-out’ of the supernova shock wave from the progenitor star, and shows that the inferred rate of such events agrees with that of all core-collapse supernovae.
Abstract: Massive stars end their short lives in spectacular explosions—supernovae—that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

542 citations


Authors

Showing all 86514 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Zhenan Bao169865106571
Gang Chen1673372149819
Peter G. Schultz15689389716
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Markku Kulmala142148785179
Jian Yang1421818111166
Wei Huang139241793522
Bin Liu138218187085
Jun Lu135152699767
Hui Li1352982105903
Lei Zhang135224099365
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

97% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

95% related

Fudan University
117.9K papers, 2.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023276
20221,087
20219,130
20208,684
20198,203