scispace - formally typeset
Search or ask a question
Institution

Nanjing University

EducationNanjing, China
About: Nanjing University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 85961 authors who have published 105504 publications receiving 2289036 citations. The organization is also known as: NJU & Nanking University.


Papers
More filters
Journal ArticleDOI
TL;DR: An Unequal Cluster-based Routing (UCR) protocol is proposed that mitigates the hot spot problem in multihop sensor networks, and achieves an obvious improvement on the network lifetime.
Abstract: Clustering provides an effective method for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques; selecting cluster heads with more residual energy, and rotating cluster heads periodically to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However, they rarely consider the hot spot problem in multihop sensor networks. When cluster heads cooperate with each other to forward their data to the base station, the cluster heads closer to the base station are burdened with heavier relay traffic and tend to die much faster, leaving areas of the network uncovered and causing network partitions. To mitigate the hot spot problem, we propose an Unequal Cluster-based Routing (UCR) protocol. It groups the nodes into clusters of unequal sizes. Cluster heads closer to the base station have smaller cluster sizes than those farther from the base station, thus they can preserve some energy for the inter-cluster data forwarding. A greedy geographic and energy-aware routing protocol is designed for the inter-cluster communication, which considers the tradeoff between the energy cost of relay paths and the residual energy of relay nodes. Simulation results show that UCR mitigates the hot spot problem and achieves an obvious improvement on the network lifetime.

475 citations

Journal ArticleDOI
01 Oct 2011-Brain
TL;DR: It is demonstrated for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.
Abstract: The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic–clonic seizures. * Abbreviations : AAL : automated anatomical labelling GTCS : generalized tonic–clonic seizures IGE : idiopathic generalized epilepsy

474 citations

Journal ArticleDOI
TL;DR: The diverse applications of nanozymes, which range from sensing, imaging, and therapeutics, to logic gates, pollutant removal, water treatment, etc, are discussed, and the current challenges facing nanozyme research are addressed.
Abstract: In the past few decades, researchers have developed lots of artificial enzymes with various materials to mimic the structures and functions of natural enzymes. Recently, nanozymes, nanomaterials with enzyme-like characteristics, are emerging as novel artificial enzymes, and attracting researchers’ enormous interest. Remarkable advances have been made in the area of nanozymes due to their unique properties compared with natural enzymes and classic artificial enzymes. Until now, lots of nanomaterials have been studied to mimic various natural enzymes for wide applications. To highlight the recent progress of nanozymes (especially in bionanotechnology), here we discuss the diverse applications of nanozymes, which range from sensing, imaging, and therapeutics, to logic gates, pollutant removal, water treatment, etc. Finally, we address the current challenges facing nanozyme research as well as possible directions to fulfill their great potential in future.

474 citations

Journal ArticleDOI
TL;DR: The effect of TiO(2) and ZnO nanoparticles on wheat growth and soil enzyme activities under field conditions is investigated and the nanoparticles themselves or their dissolved ions were clearly toxic for the soil ecosystem.
Abstract: The properties of nanoparticles and their increased use have raised concerns about their possible harmful effects within the environment. Most studies on their effects have been in aqueous systems. Here we investigated the effect of TiO2 and ZnO nanoparticles on wheat growth and soil enzyme activities under field conditions. Both of the nanoparticles reduced the biomass of wheat. The TiO2 nanoparticles were retained in the soil for long periods and primarily adhered to cell walls of wheat. The ZnO nanoparticles dissolved in the soil, thereby enhancing the uptake of toxic Zn by wheat. The nanoparticles also induced significant changes in soil enzyme activities, which are bioindicators of soil quality and health. Soil protease, catalase, and peroxidase activities were inhibited in the presence of the nanoparticles; urease activity was unaffected. The nanoparticles themselves or their dissolved ions were clearly toxic for the soil ecosystem.

474 citations

Journal ArticleDOI
TL;DR: Values of hazard quotient and hazard index indicated the non-carcinogenic risks from the studied metal(loid)s to children via ingestion, dermal contact and inhalation pathways in Nanjing given the present air quality.

474 citations


Authors

Showing all 86514 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Zhenan Bao169865106571
Gang Chen1673372149819
Peter G. Schultz15689389716
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Markku Kulmala142148785179
Jian Yang1421818111166
Wei Huang139241793522
Bin Liu138218187085
Jun Lu135152699767
Hui Li1352982105903
Lei Zhang135224099365
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

97% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

95% related

Fudan University
117.9K papers, 2.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023276
20221,087
20219,130
20208,684
20198,203