scispace - formally typeset
Search or ask a question
Institution

Nanjing University of Information Science and Technology

EducationNanjing, China
About: Nanjing University of Information Science and Technology is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Precipitation & Aerosol. The organization has 14129 authors who have published 17985 publications receiving 267578 citations. The organization is also known as: Nan Xin Da.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel geostatistical modeling framework is presented, incorporating CTM predictions into a spatiotemporal LUR model with spatial smoothing to estimate spatiotmporal variability of ozone (O3) and particulate matter with diameter less than 2.5 μm from 2000 to 2008 in the Los Angeles Basin.
Abstract: Assessments of long-term air pollution exposure in population studies have commonly employed land-use regression (LUR) or chemical transport modeling (CTM) techniques. Attempts to incorporate both approaches in one modeling framework are challenging. We present a novel geostatistical modeling framework, incorporating CTM predictions into a spatiotemporal LUR model with spatial smoothing to estimate spatiotemporal variability of ozone (O3) and particulate matter with diameter less than 2.5 μm (PM2.5) from 2000 to 2008 in the Los Angeles Basin. The observations include over 9 years’ data from more than 20 routine monitoring sites and specific monitoring data at over 100 locations to provide more comprehensive spatial coverage of air pollutants. Our composite modeling approach outperforms separate CTM and LUR models in terms of root-mean-square error (RMSE) assessed by 10-fold cross-validation in both temporal and spatial dimensions, with larger improvement in the accuracy of predictions for O3 (RMSE [ppb] f...

79 citations

Journal ArticleDOI
TL;DR: In this article, a high-resolution emission inventory was developed for Jiangsu China, including SO2, NOx, CO, NH3, volatile organic compounds (VOCs), total suspended particulates (TSP), PM10, PM2.5, black carbon (BC), organic carbon (OC), and CO2.
Abstract: . Improved emission inventories combining detailed source information are crucial for better understanding of the atmospheric chemistry and effectively making emission control policies using air quality simulation, particularly at regional or local scales. With the downscaled inventories directly applied, chemical transport models might not be able to reproduce the authentic evolution of atmospheric pollution processes at small spatial scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China, including SO2, NOx, CO, NH3, volatile organic compounds (VOCs), total suspended particulates (TSP), PM10, PM2.5, black carbon (BC), organic carbon (OC), and CO2. The key parameters relevant to emission estimation for over 6000 industrial sources were investigated, compiled, and revised at plant level based on various data sources and on-site surveys. As a result, the emission fractions of point sources were significantly elevated for most species. The improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Compared to the downscaled Multi-resolution Emission Inventory for China (MEIC), the spatial distribution of NOx emissions in our provincial inventory was more consistent with summer tropospheric NO2 VCDs observed from OMI, particularly for the grids with moderate emission levels, implying the improved emission estimation for small and medium industrial plants by this work. Three inventories (national, regional, and provincial by this work) were applied in the Models-3 Community Multi-scale Air Quality (CMAQ) system for southern Jiangsu October 2012, to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized mean errors (NME) for all the concerned species SO2, NO2, O3, and PM2.5. The result thus implied the advantage of improved emission inventory at local scale for high-resolution air quality modeling. Under the unfavorable meteorology in which horizontal and vertical movement of atmosphere was limited, the simulated SO2 concentrations at downtown Nanjing (the capital city of Jiangsu) using the regional or national inventories were much higher than those observed, implying that the urban emissions were overestimated when economy or population densities were applied to downscale or allocate the emissions. With more accurate spatial distribution of emissions at city level, the simulated concentrations using the provincial inventory were much closer to observation. Sensitivity analysis of PM2.5 and O3 formation was conducted using the improved provincial inventory through the brute force method. Iron and steel plants and cement plants were identified as important contributors to the PM2.5 concentrations in Nanjing. The O3 formation was VOC-limited in southern Jiangsu, and the concentrations were negatively correlated with NOx emissions in urban areas owing to the accumulated NOx from transportation. More evaluations are further suggested for the impacts of speciation and temporal and vertical distribution of emissions on air quality modeling at regional or local scales in China.

79 citations

Journal ArticleDOI
01 Dec 2016
TL;DR: This paper proposes the probabilistic linguistic vector-term sets (PLVTSs) to promote the application of multi-granular linguistic information and develops a novel algorithm to tackle multi-attribute group decision making (MAGDM) problems with multiple LESs.
Abstract: Display Omitted The concept of probabilistic linguistic vector-term set (PLVTS) is proposed to consider the score of linguistic term and its associated change rate simultaneously.A novel algorithm is developed to aid MAGDM with multiple linguistic evaluation scales to deal with the large group decision making with linguistic terms at the aspect of patients.Demonstrate the practical guiding significance for the product-provider (such as the hospital). With the rapid information explosion and sharing, recommender systems (RS) play an auxiliary role in assisting the Internet users to make decision especially in the e-service platform. Normally, the information in this process is related to opinions and preferences, which are usually expressed through a qualitative way such as linguistic evaluation terms (LETs). However, the LETs may come from different sources such as experts, users, etc., which makes the linguistic evaluation scales (LESs) used in this process probably be different due to their different backgrounds and levels of knowledge. The diversity and flexibility of these LESs determine the quality of information, and further affect the effectiveness of a RS. In this paper, we focus on improving the accuracy of the multi-granular linguistic recommender system by supporting customers to find out the most eligible items according their own preferences. We first propose the probabilistic linguistic vector-term sets (PLVTSs) to promote the application of multi-granular linguistic information. Based on the PLVTSs, we then develop a novel algorithm to tackle multi-attribute group decision making (MAGDM) problems with multiple LESs. Furthermore, the effectiveness of the PLVTSs is validated by an illustration of personalized hospital selection-recommender problem. Finally, we point out some possible research directions regrading to the PLVTSs.

79 citations

Journal ArticleDOI
TL;DR: The experimental results demonstrate that the proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance.

79 citations


Authors

Showing all 14448 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Lei Zhang135224099365
Bin Wang126222674364
Shuicheng Yan12381066192
Zeshui Xu11375248543
Xiaoming Li113193272445
Qiang Yang112111771540
Yan Zhang107241057758
Fei Wang107182453587
Yongfa Zhu10535533765
James C. McWilliams10453547577
Zhi-Hua Zhou10262652850
Tao Li102248360947
Lei Liu98204151163
Jian Feng Ma9730532310
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

City University of Hong Kong
60.1K papers, 1.7M citations

88% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

88% related

Nanjing University
105.5K papers, 2.2M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023173
2022552
20213,000
20202,492
20192,221
20181,822