scispace - formally typeset
Search or ask a question
Institution

Nanjing University of Information Science and Technology

EducationNanjing, China
About: Nanjing University of Information Science and Technology is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Precipitation & Aerosol. The organization has 14129 authors who have published 17985 publications receiving 267578 citations. The organization is also known as: Nan Xin Da.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, future drought characteristics over China are analyzed by using four climate models from CMIP6 under the seven SSP-RCP (shared socioeconomic pathway-representative concentration pathway) scenarios (SSP119, SSP126,SSP434, SSA245, SSSP460, SSE370, and SSP585) for three defined periods of 2021-2040 (near-term), 2041-2060 (mid-term) and 2081-2100 (long-term).

120 citations

Journal ArticleDOI
TL;DR: In this article, three typical U.S. coal coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H2/CO ratio of generated synthesis gas with or without the addition of methane.
Abstract: With the decline of oil reserves and production, the gas-to-liquids (GTL) part of Fischer–Tropsch (F-T) synthesis technology has become increasing important. Synthesis gas (H2 + CO) with a stoichiometric ratio (H2/CO) at 2 or ranging from 1 to 2 is generally used in major synthesis-gas-based chemicals production. There are growing interests in the development of an alternative technology, other than the expensive natural-gas-based catalytic process, for cost-effective production of synthesis gas with a flexible hydrogen/carbon monoxide (H2/CO) ratio. Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H2/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H2/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gas...

120 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper used nine sets of Landsat images from 1973 through 2005 to calculate the landscape metrics of forest patches, and found that the forest in Shenzhen SEZ had been restored to 85.85% of pre-urbanization coverage by 2005, but was characterized with smaller, isolated patches across the landscape.

120 citations

Journal ArticleDOI
TL;DR: A lack of education and awareness about the appropriate and safe use of agrochemicals are the main reasons for the overutilization of pesticides and for the negative consequences on human health.

120 citations

Journal ArticleDOI
TL;DR: The rational balancing of hydrogen adsorption/desorption by orbital modulation using introduced environmental electronegative carbon/nitrogen (C/N) atoms for significantly enhanced hydrogen evolution performance is reported.
Abstract: Hydrogen adsorption/desorption behavior plays a key role in hydrogen evolution reaction (HER) catalysis. The HER reaction rate is a trade-off between hydrogen adsorption and desorption on the catalyst surface. Herein, we report the rational balancing of hydrogen adsorption/desorption by orbital modulation using introduced environmental electronegative carbon/nitrogen (C/N) atoms. Theoretical calculations reveal that the empty d orbitals of iridium (Ir) sites can be reduced by interactions between the environmental electronegative C/N and Ir atoms. This balances the hydrogen adsorption/desorption around the Ir sites, accelerating the related HER process. Remarkably, by anchoring a small amount of Ir nanoparticles (7.16 wt%) in nitrogenated carbon matrixes, the resulting catalyst exhibits significantly enhanced HER performance. This includs the smallest reported overpotential at 10 mA cm−2 (4.5 mV), the highest mass activity at 10 mV (1.12 A mgIr−1) and turnover frequency at 25 mV (4.21 H2 s−1) by far, outperforming Ir nanoparticles and commercial Pt/C. Hydrogen adsorption/desorption behavior plays a key role in hydrogen evolution reaction catalysis. Here, the authors demonstrate the rational balancing of hydrogen adsorption/desorption by orbital modulation for significantly enhanced hydrogen evolution performance.

119 citations


Authors

Showing all 14448 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Lei Zhang135224099365
Bin Wang126222674364
Shuicheng Yan12381066192
Zeshui Xu11375248543
Xiaoming Li113193272445
Qiang Yang112111771540
Yan Zhang107241057758
Fei Wang107182453587
Yongfa Zhu10535533765
James C. McWilliams10453547577
Zhi-Hua Zhou10262652850
Tao Li102248360947
Lei Liu98204151163
Jian Feng Ma9730532310
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

City University of Hong Kong
60.1K papers, 1.7M citations

88% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

88% related

Nanjing University
105.5K papers, 2.2M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023173
2022552
20213,000
20202,492
20192,221
20181,822