scispace - formally typeset
Search or ask a question
Institution

Nanjing University of Science and Technology

EducationNanjing, China
About: Nanjing University of Science and Technology is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Control theory & Catalysis. The organization has 31581 authors who have published 36390 publications receiving 525474 citations. The organization is also known as: Nánjīng Lǐgōng Dàxué & Nánlǐgōng.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed DGCNN method can dynamically learn the intrinsic relationship between different electroencephalogram (EEG) channels via training a neural network so as to benefit for more discriminative EEG feature extraction.
Abstract: In this paper, a multichannel EEG emotion recognition method based on a novel dynamical graph convolutional neural networks (DGCNN) is proposed. The basic idea of the proposed EEG emotion recognition method is to use a graph to model the multichannel EEG features and then perform EEG emotion classification based on this model. Different from the traditional graph convolutional neural networks (GCNN) methods, the proposed DGCNN method can dynamically learn the intrinsic relationship between different electroencephalogram (EEG) channels, represented by an adjacency matrix, via training a neural network so as to benefit for more discriminative EEG feature extraction. Then, the learned adjacency matrix is used to learn more discriminative features for improving the EEG emotion recognition. We conduct extensive experiments on the SJTU emotion EEG dataset (SEED) and DREAMER dataset. The experimental results demonstrate that the proposed method achieves better recognition performance than the state-of-the-art methods, in which the average recognition accuracy of 90.4 percent is achieved for subject dependent experiment while 79.95 percent for subject independent cross-validation one on the SEED database, and the average accuracies of 86.23, 84.54 and 85.02 percent are respectively obtained for valence, arousal and dominance classifications on the DREAMER database.

600 citations

Journal ArticleDOI
TL;DR: The results show that the multi-frequency temporal phase unwrapping provides the best unwrapped reliability, while the multi -wavelength approach is the most susceptible to noise-induced unwrappers errors.

598 citations

Journal ArticleDOI
TL;DR: This study demonstrates that all-inorganic perovskite CsPbX3 nanosheets as a new class of 2D semiconductors have huge potential for flexible optoelectronic applications.
Abstract: Printed flexible photodetectors based on 2D inorganic perovskites with atomic thickness show excellent photosensing with fast rise and decay response times. As-synthesized nanosheets can easily be dispersed in various solvents, leading to large-area, crack-free, low-roughness, flexible films after printing. This study demonstrates that all-inorganic perovskite CsPbX3 nanosheets as a new class of 2D semiconductors have huge potential for flexible optoelectronic applications.

597 citations

Journal ArticleDOI
TL;DR: Experimental results show that this three-dimensional baker map is 2–3 times faster than the two-dimensional one, showing its great potential in real-time image encryption applications.
Abstract: Symmetric block encryption schemes, designed on invertible two-dimensional chaotic maps on a torus or a square, prove feasible and secure for real-time image encryption according to the commonly used criteria given in the literature. In this paper, a typical map of this kind, namely, the baker map, is further extended to be three-dimensional and then used to speed up image encryption while retaining its high degree of security. The proposed algorithm is described in detail, along with its security analysis and implementation. Experimental results show that this three-dimensional baker map is 2–3 times faster than the two-dimensional one, showing its great potential in real-time image encryption applications.

590 citations

Journal ArticleDOI
TL;DR: In this article, a facile hydrothermal method was used to produce luminous carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths.
Abstract: Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as μM.

587 citations


Authors

Showing all 31818 results

NameH-indexPapersCitations
Jian Yang1421818111166
Liming Dai14178182937
Hui Li1352982105903
Jian Zhou128300791402
Shuicheng Yan12381066192
Zidong Wang12291450717
Xin Wang121150364930
Xuan Zhang119153065398
Zhenyu Zhang118116764887
Xin Li114277871389
Zeshui Xu11375248543
Xiaoming Li113193272445
Chunhai Fan11270251735
H. Vincent Poor109211667723
Qian Wang108214865557
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

South China University of Technology
69.4K papers, 1.2M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022594
20214,309
20203,990
20193,920
20183,211