scispace - formally typeset
Search or ask a question
Institution

Nanjing University of Science and Technology

EducationNanjing, China
About: Nanjing University of Science and Technology is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Computer science. The organization has 31581 authors who have published 36390 publications receiving 525474 citations. The organization is also known as: Nánjīng Lǐgōng Dàxué & Nánlǐgōng.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, modisperse polystyrene (PS) colloidal spheres were successfully prepared through emulsifier-free emulsion polymerization by controlling the polymerization reaction time, ionic strength of the system, concentration of the ionic copolymer (sodium p-styrenesulfonate) and other factors.
Abstract: Monodisperse polystyrene (PS) colloidal spheres were successfully prepared through emulsifier-free emulsion polymerization by controlling the polymerization reaction time, ionic strength of the system, concentration of the ionic copolymer (sodium p-styrenesulfonate) and other factors. The PS colloidal spheres were assembled into colloidal crystals whose structures were mainly face-centered cubic (fcc) close-packed. Then FDTD method was used to calculate the color-rendering characteristics of the colloidal crystals surface. The calculated results were consistent with the experimental results.

114 citations

Journal ArticleDOI
TL;DR: In this paper, a sulfated Fe-Ti spinel catalyst was developed for the selective catalytic reduction (SCR) of NO from coal-fired power plants burning lignite due to the drop of NO conversion, low N2 selectivity, and volatility of vanadium pentoxide at high temperatures.
Abstract: Lignite is widely used as the fuel for coal-fired power plants, and its flue gas temperature is about 50–100 °C higher than others. V2O5–WO3/TiO2 is extremely restricted in the selective catalytic reduction (SCR) of NO from the coal-fired power plants burning lignite due to the drop of NOx conversion, low N2 selectivity, and volatility of vanadium pentoxide at high temperatures. Therefore, a more environmental-friendly SCR catalyst with excellent SCR activity and better N2 selectivity at 350–450 °C should be developed for this application. In this work, sulfated Fe–Ti spinel catalyst was developed for the SCR of NO from the coal-fired power plants burning lignite. The drop of NOx conversion at high temperatures was mainly related to the simultaneous occurrence of the catalytic oxidization of NH3 to NO during the SCR reaction. Ti was incorporated into γ-Fe2O3 to decease the oxidization ability of Fe3+ on the surface, and the sites for −NH2 adsorption and the active components for −NH2 oxidization were sepa...

114 citations

Journal ArticleDOI
TL;DR: In this article, the corrosion inhibition behavior of four selected amino acid compounds, namely l-cysteine, l-histidine, l -tryptophan and l-serine on mild steel surface in deaerated 1 M HCl solution were studied electrochemically by Tafel polarization and electrochemical impedance spectroscopy methods and computationally by quantum chemical calculation and molecular dynamics simulation.
Abstract: The corrosion inhibition behaviour of four selected amino acid compounds, namely l-cysteine, l-histidine, l-tryptophan and l-serine on mild steel surface in deaerated 1 M HCl solution were studied electrochemically by Tafel polarization and electrochemical impedance spectroscopy methods and computationally by the quantum chemical calculation and molecular dynamics simulation. Electrochemical results show that these amino acid compounds inhibit the corrosion of mild steel in 1 M HCl solution significantly. The order of inhibition efficiency of these inhibitors follows the sequence: l-tryptophan > l-histidine > l-cysteine > l-serine. The quantum chemical calculations were performed to characterize the electronic parameters which are associated with inhibition efficiency. The molecular dynamics simulations were applied to find the equilibrium adsorption configurations and calculate the interaction energy between inhibitors and iron surface. Results obtained from Tafel and impedance methods are in good agreement. The electrochemical experimental results are supported by the theoretical data.

114 citations

Journal ArticleDOI
TL;DR: In this article, a confined pyrolysis strategy to prepare N-doped hierarchical carbon (NDHC) catalysts for non-radical advanced oxidation processes is proposed, and the results show that 98% of BPA (20 ppm) was removed by NDHC in 5 min.
Abstract: Development of metal–organic framework (MOF) derived carbon materials toward advanced oxidation processes (AOPs) is essential for environment-friendly catalysts. In this work, a confined pyrolysis strategy to prepare N-doped hierarchical carbon (NDHC) catalysts for non-radical advanced oxidation processes is proposed. After simply pyrolyzing phenolic resin (PR) coated zeolite imidazole framework (ZIF) particles, NDHC with favorable structural and compositional properties is obtained. To present the catalytic performance of resultant NDHC, bisphenol A (BPA) is selected as the target contaminant. The results show that 98% of BPA (20 ppm) was removed by NDHC in 5 min, which is superior to many other peroxymonosulfate (PMS) catalysts. Based on electron paramagnetic resonance (EPR) analysis and scavenger experiments, a singlet oxygen-dominated non-radical mechanism is confirmed in the degradation process. In addition, the influencing factors including solution pH, catalyst/PMS dosage, BPA concentration, reaction temperature, and anion/organic matter are also investigated. This confined pyrolysis strategy endows MOF derived carbon materials wide application prospects in environmental remediation.

114 citations

Journal ArticleDOI
TL;DR: In this article, the authors comprehensively review recent studies on ceria for NH3-SCR catalysts when used as support, promoter, or the main active component, and discuss the general development of ceria-based catalysts.

114 citations


Authors

Showing all 31818 results

NameH-indexPapersCitations
Jian Yang1421818111166
Liming Dai14178182937
Hui Li1352982105903
Jian Zhou128300791402
Shuicheng Yan12381066192
Zidong Wang12291450717
Xin Wang121150364930
Xuan Zhang119153065398
Zhenyu Zhang118116764887
Xin Li114277871389
Zeshui Xu11375248543
Xiaoming Li113193272445
Chunhai Fan11270251735
H. Vincent Poor109211667723
Qian Wang108214865557
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

South China University of Technology
69.4K papers, 1.2M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022594
20214,309
20203,990
20193,920
20183,211