scispace - formally typeset
Search or ask a question
Institution

Nanjing University of Science and Technology

EducationNanjing, China
About: Nanjing University of Science and Technology is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Control theory & Catalysis. The organization has 31581 authors who have published 36390 publications receiving 525474 citations. The organization is also known as: Nánjīng Lǐgōng Dàxué & Nánlǐgōng.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel strategy for spatially controlled functionalization of AuNPs with designed diblock oligonucleotides that are free of modifications is reported, which results in DNA-AuNPs nanoconjugates with high and tunable hybridization ability, which form the basis of a rapid plasmonic DNA sensor.
Abstract: Conjugates of DNA and gold nanoparticles (AuNPs) typically exploit the strong Au–S chemistry to self-assemble thiolated oligonucleotides at AuNPs. However, it remains challenging to precisely control the orientation and conformation of surface-tethered oligonucleotides and finely tune the hybridization ability. We herein report a novel strategy for spatially controlled functionalization of AuNPs with designed diblock oligonucleotides that are free of modifications. We have demonstrated that poly adenine (polyA) can serve as an effective anchoring block for preferential binding with the AuNP surface, and the appended recognition block adopts an upright conformation that favors DNA hybridization. The lateral spacing and surface density of DNA on AuNPs can also be systematically modulated by adjusting the length of the polyA block. Significantly, this diblock oligonucleotide strategy results in DNA–AuNPs nanoconjugates with high and tunable hybridization ability, which form the basis of a rapid plasmonic DNA...

426 citations

Journal ArticleDOI
18 Oct 2013-Science
TL;DR: Very-high-rate shear deformation with high strain gradients was applied in the top surface layer of bulk nickel, where a 2D nanometer-scale laminated structure was induced, producing a stronger, more thermally robust nickel microstructure.
Abstract: Heavy plastic deformation may refine grains of metals and make them very strong. But the strain-induced refinement saturates at large strains, forming three-dimensional ultrafine-grained (3D UFG) structures with random orientations. Further refinement of this microstructure is limited because of the enhanced mobility of grain boundaries. Very-high-rate shear deformation with high strain gradients was applied in the top surface layer of bulk nickel, where a 2D nanometer-scale laminated structure was induced. The strongly textured nanolaminated structure (average lamellar thickness of 20 nanometers) with low-angle boundaries among the lamellae is ultrahard and ultrastable: It exhibits a hardness of 6.4 gigapascal--which is higher than any reported hardness of the UFG nickel--and a coarsening temperature of 40 kelvin above that in UFG nickel.

426 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the recent significant progress in the design and fabrication of novel carbon-based anode catalysts via various strategies and their applications in methanol oxidation reaction.
Abstract: With the continuously increasing demand of energy along with depletion of conventional fossil fuel reserves and the rapidly escalating environmental problems, direct methanol fuel cells (DMFCs) as alternative green and sustainable power sources have aroused tremendous research interest in academic and engineering circles. In order to achieve high power density as well as low production cost of DMFCs, the well-designed and fabricated anode catalysts with controllable composition, architecture and morphology have been regarded as a key point for realizing high-performance. In this aspect, carbon materials, as building blocks, offer a great potential to play a key role in constructing advanced hybrid catalysts due to their exceptional physicochemical properties, such as high specific surface area, superior electronic conductivity, excellent stability and so on. This review summarizes the recent significant progress in the design and fabrication of novel carbon-based anode catalysts via various strategies and their applications in methanol oxidation reaction. Finally, perspectives on the challenges and research trends in this emerging area are also discussed.

424 citations

Journal ArticleDOI
TL;DR: This perspective presents current state of the art and outlook in synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols through two leading hydrogenation mechanisms: methanol reaction and Fischer-Tropsch based carbon dioxide hydrogenation.
Abstract: Recently, carbon dioxide capture and conversion, along with hydrogen from renewable resources, provide an alternative approach to synthesis of useful fuels and chemicals. People are increasingly interested in developing innovative carbon dioxide hydrogenation catalysts, and the pace of progress in this area is accelerating. Accordingly, this perspective presents current state of the art and outlook in synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols through two leading hydrogenation mechanisms: methanol reaction and Fischer-Tropsch based carbon dioxide hydrogenation. The future research directions for developing new heterogeneous catalysts with transformational technologies, including 3D printing and artificial intelligence, are provided. Carbon dioxide (CO2) capture and conversion provide an alternative approach to synthesis of useful fuels and chemicals. Here, Ye et al. give a comprehensive perspective on the current state of the art and outlook of CO2 catalytic hydrogenation to the synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols.

423 citations

Journal ArticleDOI
TL;DR: The experimental results indicate that the classification accuracy is increased significantly under parallel feature fusion and also demonstrate that the developed parallel fusion is more effective than the classical serial feature fusion.

418 citations


Authors

Showing all 31818 results

NameH-indexPapersCitations
Jian Yang1421818111166
Liming Dai14178182937
Hui Li1352982105903
Jian Zhou128300791402
Shuicheng Yan12381066192
Zidong Wang12291450717
Xin Wang121150364930
Xuan Zhang119153065398
Zhenyu Zhang118116764887
Xin Li114277871389
Zeshui Xu11375248543
Xiaoming Li113193272445
Chunhai Fan11270251735
H. Vincent Poor109211667723
Qian Wang108214865557
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

South China University of Technology
69.4K papers, 1.2M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022594
20214,309
20203,990
20193,920
20183,211