scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Enantioselective synthesis. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
30 Aug 2017-ACS Nano
TL;DR: The self-regulated photodynamic properties of nanoceria-doped SPN not only result in dramatically reduced nonspecific damage to normal tissue under NIR laser irradiation but also lead to significantly enhanced photodynamic efficacy for cancer therapy in a murine mouse model.
Abstract: Development of optical nanotheranostics for the capability of photodynamic therapy (PDT) provides opportunities for advanced cancer therapy. However, most nanotheranostic systems fail to regulate their generation levels of reactive oxygen species (ROS) according to the disease microenvironment, which can potentially limit their therapeutic selectivity and increase the risk of damage to normal tissues. We herein report the development of hybrid semiconducting polymer nanoparticles (SPNs) with self-regulated near-infrared (NIR) photodynamic properties for optimized cancer therapy. The SPNs comprise a binary component nanostructure: a NIR-absorbing semiconducting polymer acts as the NIR fluorescent PDT agent, while nanoceria serves as the smart intraparticle regular to decrease and increase ROS generation at physiologically neutral and pathologically acidic environments, respectively. As compared with nondoped SPNs, the NIR fluorescence imaging ability of nanoceria-doped SPNs is similar due to the optically ...

219 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between confining conditions and the resulting structures, focusing on principles governing structural formation of diblock copolymers under two-dimensional and three-dimensional confinement, is discussed.
Abstract: Block copolymers are a class of soft matter that self-assemble to form ordered morphologies at nanometer scales, making them ideal materials for various applications. The self-assembly of block copolymers is mainly controlled by the monomer–monomer interactions, block compositions and molecular architectures. Besides these intrinsic parameters, placing block copolymers under confinement introduces a number of extrinsic factors, including the degree of structural frustration and surface–polymer interactions, which can strongly influence the self-assembled morphologies. Therefore confinement of block copolymers provides a powerful route to manipulate their self-assembled nanostructures. In this review, we discuss the relationship between confining conditions and the resulting structures, focusing on principles governing structural formation of diblock copolymers under two-dimensional and three-dimensional confinement. In particular, the effects of commensurability condition, surface–polymer interactions, and confining geometries on the self-assembled morphologies are discussed.

219 citations

Journal ArticleDOI
TL;DR: In this paper, the continuous measurement of nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NO(subscript x)) and ozone (O3) was conducted in Tianjin from September 8 to October 15, 2006.
Abstract: The continuous measurement of nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NO(subscript x)) and ozone (O3) was conducted in Tianjin from September 8 to October 15, 2006. The data were used to investigate the relationship between the O3 distribution and its association with ambient concentrations of NO, NO2 and NO(subscript x) (NO and NO2). The measured concentrations of the pollutants in the study area varied as a function of time, while peaks in NO, NO2 and O3 all occurred in succession in the daytime. The diurnal cycle of ground-level ozone concentration showed a mid-day peak and lower nighttime concentrations. Furthermore, an inverse relationship was found between O3 NO, NO2 and NO(subscript x). In addition, a linear relationship between NO2 and NO(subscript x), as well as NO and NO(subscript x), and a polynomial relationship between O3 and NO2/NO was found. The variation in the level of oxidant (O3 and NO2) with NO2 was also obtained. It can be seen that OX concentration at a given location is made up of two parts: one independent and the other dependent on NO2 concentration. The independent part can be considered as a regional contribution and is about 20 ppb in Tianjin. An obvious difference in NO, NO(subscript x) and O3 concentrations between weekdays and weekends was also found, but this difference did not appear in NO2. Lastly, the diurnal variation of O3 concentration under different meteorological conditions was demonstrated and analyzed.

218 citations

Journal ArticleDOI
Abstract: A control chart based on the change-point model is proposed that is able to monitor linear profiles whose parameters are unknown but can be estimated from historical data. This chart can detect a shift in either the intercept, slope or standard deviation. Simulation results show that the proposed approach performs well across a range of possible shifts, and that it can be used during the start-up stages of a process. Simple diagnostic aids are also given to estimate the location of the change and to determine which of the parameters has changed.

218 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of the endothelial dysfunction, and identify pathways to effective targeted therapies.
Abstract: The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1β monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.

218 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022925
20215,270
20204,645
20194,261
20183,520