scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Enantioselective synthesis. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Proceedings ArticleDOI
01 Oct 2017
TL;DR: In this paper, the structural similarity measure (Structure-measure) is proposed to evaluate non-binary foreground maps, which simultaneously evaluates region-aware and object-aware structural similarity between a saliency map and a ground-truth map.
Abstract: Foreground map evaluation is crucial for gauging the progress of object segmentation algorithms, in particular in the field of salient object detection where the purpose is to accurately detect and segment the most salient object in a scene. Several widely-used measures such as Area Under the Curve (AUC), Average Precision (AP) and the recently proposed F W/B (Fbw) have been used to evaluate the similarity between a non-binary saliency map (SM) and a ground-truth (GT) map. These measures are based on pixel-wise errors and often ignore the structural similarities. Behavioral vision studies, however, have shown that the human visual system is highly sensitive to structures in scenes. Here, we propose a novel, efficient, and easy to calculate measure known as structural similarity measure (Structure-measure) to evaluate non-binary foreground maps. Our new measure simultaneously evaluates region-aware and object-aware structural similarity between a SM and a GT map. We demonstrate superiority of our measure over existing ones using 5 meta-measures on 5 benchmark datasets.

693 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent advances in the processing of microwave ferrites is presented, including self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction.

686 citations

Journal ArticleDOI
TL;DR: This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about the response of the immune system to EMTs.
Abstract: 1.1. Significance of IVDs in the Clinic IVD test is a crucial component of clinical care that performs a diagnostic test on biological samples that have been taken from a living body, such as blood, urine, and tissue.1 Such tests are usually performed to determine or confirm the presence of disease in an individual. “In vitro” literally means “within the glass”, which indicates that the test was historically conducted in glass test tubes. In contrast, in vivo tests, literally “within the living”, are conducted within a whole, living organism including human body.2 IVD tests have received much public attention because of their distinct features in the medical profession. First, IVD tests do not interact with the human body directly, making such diagnosis accessible without invasive surgeries and thus saving a great deal of suffering. Second, the procedures of IVDs are performed on samples rather than human body, avoiding the possible biological safety problems on patients that often take place in the in vivo diagnostics. Third, an IVD test can quickly provide valuable information on a patient’s healthcare conditions. On the basis of the information, physicians or patients are able to make a timely decision for patient care or treatment. Fourth, the application of IVDs enables early diagnosis and makes treatment of serious diseases easier. Generally, the cost of early testing is much lower than that of the later on extensive treatment. Last, IVDs play a particularly vital role in remote settings for managing outbreaks of acute infectious diseases, where effective but simple diagnostic systems are highly desirable. These features make IVDs unique and of great importance among medical technologies.

685 citations

Journal ArticleDOI
TL;DR: This work reports a new metal-free phosphorene/g-C3 N4 photocatalyst and sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics.
Abstract: The generation of green hydrogen (H2 ) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H2 production is a highly promising strategy for solar-to-H2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal-free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal-free phosphorene/graphitic carbon nitride (g-C3 N4 ) is fabricated. The phosphorene/g-C3 N4 nanocomposite shows an enhanced visible-light photocatalytic H2 production activity of 571 µmol h-1 g-1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron-based X-ray absorption near-edge structure, and theoretical calculations. This work not only reports a new metal-free phosphorene/g-C3 N4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics.

683 citations

Journal ArticleDOI
TL;DR: The better PCEs were achieved by improving the short-circuit current density without sacrificing the high open-circuits voltage and fill factor through the strategy of incorporating the advantages of both conventional small molecules and polymers for OPVs.
Abstract: Three small molecules named DR3TBDTT, DR3TBDTT-HD, and DR3TBD2T with a benzo[1,2-b:4,5-b']dithiophene (BDT) unit as the central building block have been designed and synthesized for solution-processed bulk-heterojunction solar cells. Power conversion efficiencies (PCEs) of 8.12% (certified 7.61%) and 8.02% under AM 1.5G irradiation (100 mW cm(-2)) have been achieved for DR3TBDTT- and DR3TBDT2T-based organic photovoltaic devices (OPVs) with PC71BM as the acceptor, respectively. The better PCEs were achieved by improving the short-circuit current density without sacrificing the high open-circuit voltage and fill factor through the strategy of incorporating the advantages of both conventional small molecules and polymers for OPVs.

680 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022925
20215,270
20204,645
20194,261
20183,520