scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of recent advances in the removal and degradation of water pollutants by metal-organic frameworks (MOFs) is presented in this paper, where the challenges and prospects in this active field are also briefly discussed.

451 citations

Journal ArticleDOI
Yanliang Liang1, Rujun Feng1, Siqi Yang1, Hua Ma1, Jing Liang1, Jun Chen1 
TL;DR: The combination of a highly exfoliated, graphene-like MoS₂ cathode and ultrasmall Mg nanoparticle anode is proposed, for the first time, for rechargeable Mg batteries, emphasizing the necessity of rational morphological control of electrode materials.
Abstract: The combination of a highly exfoliated, graphene-like MoS₂ cathode and ultrasmall Mg nanoparticle anode is proposed, for the first time, for rechargeable Mg batteries. Such a configuration exhibits an operating voltage of 1.8 V and a well reversible discharge capacity of ca. 170 mA h g−1, emphasizing the necessity of rational morphological control of electrode materials and opening up new opportunities for rechargeable Mg batteries.

449 citations

Journal ArticleDOI
TL;DR: In this article, an Urchin-like CoSe2 assembled by nanorods has been synthesized via simple solvothermal route and has been first applied as an anode material for sodium-ion batteries with ether-based electrolytes.
Abstract: Urchin-like CoSe2 assembled by nanorods has been synthesized via simple solvothermal route and has been first applied as an anode material for sodium-ion batteries (SIBs) with ether-based electrolytes. The CoSe2 delivers excellent sodiation and desodiation properties when using 1 m NaCF3SO3 in diethyleneglycol dimethylether as an electrolyte and cycling between 0.5 and 3.0 V. A high discharge capacity of 0.410 Ah g−1 is obtained at 1 A g−1 after 1800 cycles, corresponding to a capacity retention of 98.6% calculated from the 30th cycle. Even at an ultrahigh rate of 50 A g−1, the capacity still maintains 0.097 Ah g−1. The reaction mechanism of the as-prepared CoSe2 is also investigated. The results demonstrate that at discharged 1.56 V, insertion reaction occurs, while two conversion reactions take place at the second and third plateaus around 0.98 and 0.65 V. During the charge process, Co first reacts with Na2Se to form NaxCoSe2 and then turns back to CoSe2. In addition to Na/CoSe2 half cells, Na3V2(PO4)3/CoSe2 full cell with excessive amount of Na3V2(PO4)3 has been studied. The full cell exhibits a reversible capacity of 0.380 Ah g−1. This work definitely enriches the possibilities for anode materials for SIBs with high performance.

449 citations

Journal ArticleDOI
TL;DR: The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices.
Abstract: As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.

448 citations

Journal ArticleDOI
17 Jan 2013-Cell
TL;DR: The crystal structure of MDA5 bound to dsRNA is reported, which shows how, using the same domain architecture, MDA5 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of ds RNA.

446 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022927
20215,274
20204,645
20194,261
20183,520