scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Enantioselective synthesis. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
23 Nov 2009-PLOS ONE
TL;DR: It is demonstrated that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.
Abstract: Background Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. Methodology/Principal Findings We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Conclusions/Significance Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

384 citations

Journal ArticleDOI
TL;DR: This review summarizes the existing issues with regard to Li anodes and their underlying reasons and then highlights the recent progress made in the development of high-performance LiAnodes, and proposes the persisting challenges and opportunities toward the exploration of practical Li-metal anodes.
Abstract: Lithium-ion batteries have had a tremendous impact on several sectors of our society; however, the intrinsic limitations of Li-ion chemistry limits their ability to meet the increasing demands of developing more advanced portable electronics, electric vehicles, and grid-scale energy storage systems. Therefore, battery chemistries beyond Li ions are being intensively investigated and need urgent breakthroughs toward commercial applications, wherein the use of metallic Li is one of the most intuitive choices. Despite several decades of oblivion due to safety concerns regarding the growth of Li dendrites, Li-metal anodes are now poised to be revived because of the advances in investigative tools and globally invested efforts. In this review, we first summarize the existing issues with regard to Li anodes and their underlying reasons and then highlight the recent progress made in the development of high-performance Li anodes. Finally, we propose the persisting challenges and opportunities toward the exploration of practical Li-metal anodes.

384 citations

Journal ArticleDOI
TL;DR: This Review comprehensively surveys the progress in polymer-derived functional HPCMs in terms of how to produce and control their porosities, heteroatom doping effects, and morphologies and their related use and provides perspective on how to predefine the structures of HPC Ms by using polymers to realize their potential applications in the current fields of energy generation/conversion and environmental remediation.
Abstract: Heteroatom-doped porous carbon materials (HPCMs) have found extensive applications in adsorption/separation, organic catalysis, sensing, and energy conversion/storage. The judicious choice of carbon precursors is crucial for the manufacture of HPCMs with specific usages and maximization of their functions. In this regard, polymers as precursors have demonstrated great promise because of their versatile molecular and nanoscale structures, modulatable chemical composition, and rich processing techniques to generate textures that, in combination with proper solid-state chemistry, can be maintained throughout carbonization. This Review comprehensively surveys the progress in polymer-derived functional HPCMs in terms of how to produce and control their porosities, heteroatom doping effects, and morphologies and their related use. First, we summarize and discuss synthetic approaches, including hard and soft templating methods as well as direct synthesis strategies employing polymers to control the pores and/or heteroatoms in HPCMs. Second, we summarize the heteroatom doping effects on the thermal stability, electronic and optical properties, and surface chemistry of HPCMs. Specifically, the heteroatom doping effect, which involves both single-type heteroatom doping and codoping of two or more types of heteroatoms into the carbon network, is discussed. Considering the significance of the morphologies of HPCMs in their application spectrum, potential choices of suitable polymeric precursors and strategies to precisely regulate the morphologies of HPCMs are presented. Finally, we provide our perspective on how to predefine the structures of HPCMs by using polymers to realize their potential applications in the current fields of energy generation/conversion and environmental remediation. We believe that these analyses and deductions are valuable for a systematic understanding of polymer-derived carbon materials and will serve as a source of inspiration for the design of future HPCMs.

384 citations

Journal ArticleDOI
TL;DR: A Michael acceptor inhibitor (named N3) was found to demonstrate in vitro inactivation of IBV Mpro and potent antiviral activity against IBV in chicken embryos and provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases.
Abstract: Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M(pro)), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) M(pro) and a severe acute respiratory syndrome CoV (SARS-CoV) M(pro) mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M(pro). A monomeric form of IBV M(pro) was identified for the first time in CoV M(pro) structures. A comparison of these two structures to other available M(pro) structures provides new insights for the design of substrate-based inhibitors targeting CoV M(pro)s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M(pro) and was found to demonstrate in vitro inactivation of IBV M(pro) and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M(pro).

383 citations

Journal ArticleDOI
TL;DR: This unit describes how to use the I‐TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSer modeling quality for distant‐homologous and multi‐domain protein targets.
Abstract: I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets.

382 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022925
20215,270
20204,645
20194,261
20183,520