scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
M. Ablikim, M. N. Achasov1, O. Albayrak2, D. J. Ambrose  +365 moreInstitutions (52)
TL;DR: E+e-→π+π-hc at center-of-mass energies from 3.90 to 4.42 GeV is studied by using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider and a distinct structure, referred to as Zc(4020), is observed in the π±hc mass spectrum.
Abstract: We study e(+)e(-) -> pi(+) pi(-)h(c) at center-of-mass energies from 3.90 to 4.42 GeV by using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross sections are measured at 13 energies and are found to be of the same order of magnitude as those of e(+)e(-) -> pi(+) pi(-) J/Psi but with a different line shape. In the pi(+/-)h(c) mass spectrum, a distinct structure, referred to as Z(c)(4020) is observed at 4. 02 GeV/c(2). The Z(c)(4020) carries an electric charge and couples to charmonium. A fit to the pi(+/-)h(c) invariant mass spectrum, neglecting possible interferences, results in a mass of (4022.9 +/- 0.8 +/- 2.7) MeV/c(2) and a width of (7.9 +/- 2.7 +/- 2.6) MeV for the Z(c)(4020), where the first errors are statistical and the second systematic. The difference between the parameters of this structure and the Z(c) (4025) observed in the D*(D) over bar* final state is within 1.5 sigma, but whether they are the same state needs further investigation. No significant Z(c)(3900) signal is observed, and upper limits on the Z(c)(3900) production cross sections in pi +/- h(c) at center-of-mass energies of 4.23 and 4.26 GeVare set.

377 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: Qibin et al. as mentioned in this paper proposed a strip pooling strategy, which considers a long but narrow kernel, i.e., 1xN or Nx1, to capture long-range contextual information for pixel-wise prediction tasks.
Abstract: Spatial pooling has been proven highly effective to capture long-range contextual information for pixel-wise prediction tasks, such as scene parsing. In this paper, beyond conventional spatial pooling that usually has a regular shape of NxN, we rethink the formulation of spatial pooling by introducing a new pooling strategy, called strip pooling, which considers a long but narrow kernel, i.e., 1xN or Nx1. Based on strip pooling, we further investigate spatial pooling architecture design by 1) introducing a new strip pooling module that enables backbone networks to efficiently model long-range dependencies; 2) presenting a novel building block with diverse spatial pooling as a core; and 3) systematically comparing the performance of the proposed strip pooling and conventional spatial pooling techniques. Both novel pooling-based designs are lightweight and can serve as an efficient plug-and-play modules in existing scene parsing networks. Extensive experiments on Cityscapes and ADE20K benchmarks demonstrate that our simple approach establishes new state-of-the-art results. Code is available at https://github.com/Andrew-Qibin/SPNet.

377 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis and photophysical/electrochemical properties of a series of novel triphenylamine (TPA)-based organic dyes (TPAR1, TPAR2, TPARP4, and TPAR5) as well as their application in dye-sensitized nanocrystalline TiO2 solar cells were reported.
Abstract: We report here on the synthesis and photophysical/electrochemical properties of a series of novel triphenylamine (TPA)-based organic dyes (TPAR1, TPAR2, TPAR4, and TPAR5) as well as their application in dye-sensitized nanocrystalline TiO2 solar cells (DSCs). In the four designed dyes, the TPA group and the rhodanine-3-acetic acid take the role of the basic electron donor unit and the electron acceptor, respectively. It was found that introduction of a CH2CH− group into the TPA unit exhibited better photovoltaic performance due to the increase of the electron-density donor moiety and that introduction of a methine (−CHCH−) unit to the π bridge resulted in a red-shift and broadening of the absorption spectrum due to expansion of the π-conjugation system. Density functional theory (DFT) calculation indicated that the electron distribution moved from the donor unit to the electron acceptor under light irradiation, which means efficient intramolecular charge transfer. In particular, the DSCs based on TPAR4 sho...

377 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a new dimension to this 2D nanoscale material by showing the excellent light-triggered acutation of its thermoplastic polyurethane nanocomposites with significantly enhanced mechanical properties.
Abstract: The emerging field of optical-triggered actuators based on polymeric nanocomposite continues to be the focus of considerable research in recent years because of their scientific and technological significance. In principle, dispersing nanofiller with unique characteristics in polymer matrix can not only provide superb enhancement of performance but also afford novel actuation schemes to the systems. Graphene, combining its unusual electrical, thermal, mechanical, and optical properties, can provide the ability to act as “energy transfer” and trigger unit in the realm of nanocomposite actuators. Herein, we demonstrate a new dimension to this 2D nanoscale material by showing the excellent light-triggered acutation of its thermoplastic polyurethane nanocomposites with significantly enhanced mechanical properties. These nanocomposite actuators with 1 wt % loading of sulfonated functionalized graphene sheets (sulfonated-graphene) exhibit repeatable infrared-triggered actuation performance which can strikingly ...

376 citations

Journal ArticleDOI
TL;DR: In this article, a facile nitrogenation/exfoliation process was used to prepare hybrid Ni-C-N nanosheets, which are <2 nm thin, chemically stable, and metallically conductive.
Abstract: We report a facile nitrogenation/exfoliation process to prepare hybrid Ni–C–N nanosheets. These nanosheets are <2 nm thin, chemically stable, and metallically conductive. They serve as a robust catalyst for the hydrogen evolution reaction in 0.5 M H2SO4, or 1.0 M KOH or 1.0 M PBS (pH = 7). For example, they catalyze the hydrogen evolution reaction in 0.5 M H2SO4 at an onset potential of 34.7 mV, an overpotential of 60.9 mV (at j = 10 mA cm–2) and with remarkable long-term stability (∼10% current drop after 70 h testing period). They are promising as a non-Pt catalyst for practical hydrogen evolution reaction.

376 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022927
20215,274
20204,645
20194,261
20183,520