scispace - formally typeset
Search or ask a question
Institution

Nankai University

EducationTianjin, China
About: Nankai University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Enantioselective synthesis. The organization has 42964 authors who have published 51866 publications receiving 1127896 citations. The organization is also known as: Nánkāi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the fundamental principles and applications of Mg-air batteries are introduced and the design of electrode materials both for anodes and cathodes for further performance improvement is discussed.
Abstract: Metal–air batteries are important power sources for electronics and vehicles because of their remarkable high theoretical energy density and low cost. In this paper, we introduce the fundamental principles and applications of Mg–air batteries. Recent progress in Mg or Mg alloys as anode materials and typical classes of air cathode catalysts for Mg–air batteries are reviewed. In the meantime, different compositions of the electrolyte are also compared. The design of electrode materials both for anodes and cathodes of Mg–air batteries is discussed for further performance improvement. It is noted that in the development of rechargeable Mg–air batteries, bi-functional catalysts with reversible oxygen reduction and evolution reactions are facing challenges and it is worthwhile devoting much effort to this.

348 citations

Journal ArticleDOI
TL;DR: Here, it is found that local strain induced on ReSe2, a new member of the transition metal dichalcogenides family, greatly changes its magnetic, optical, and electrical properties.
Abstract: Creating materials with ultimate control over their physical properties is vital for a wide range of applications. From a traditional materials design perspective, this task often requires precise control over the atomic composition and structure. However, owing to their mechanical properties, low-dimensional layered materials can actually withstand a significant amount of strain and thus sustain elastic deformations before fracture. This, in return, presents a unique technique for tuning their physical properties by "strain engineering". Here, we find that local strain induced on ReSe2, a new member of the transition metal dichalcogenides family, greatly changes its magnetic, optical, and electrical properties. Local strain induced by generation of wrinkle (1) modulates the optical gap as evidenced by red-shifted photoluminescence peak, (2) enhances light emission, (3) induces magnetism, and (4) modulates the electrical properties. The results not only allow us to create materials with vastly different properties at the nanoscale, but also enable a wide range of applications based on 2D materials, including strain sensors, stretchable electrodes, flexible field-effect transistors, artificial-muscle actuators, solar cells, and other spintronic, electromechanical, piezoelectric, photonic devices.

347 citations

Proceedings Article
12 Feb 2017
TL;DR: The authors proposed a topic aware sequence-to-sequence (TA-Seq2Seq) model, which utilizes topics to simulate prior human knowledge that guides them to form informative and interesting responses in conversation.
Abstract: We consider incorporating topic information into a sequence-to-sequence framework to generate informative and interesting responses for chatbots. To this end, we propose a topic aware sequence-to-sequence (TA-Seq2Seq) model. The model utilizes topics to simulate prior human knowledge that guides them to form informative and interesting responses in conversation, and leverages topic information in generation by a joint attention mechanism and a biased generation probability. The joint attention mechanism summarizes the hidden vectors of an input message as context vectors by message attention and synthesizes topic vectors by topic attention from the topic words of the message obtained from a pre-trained LDA model, with these vectors jointly affecting the generation of words in decoding. To increase the possibility of topic words appearing in responses, the model modifies the generation probability of topic words by adding an extra probability item to bias the overall distribution. Empirical studies on both automatic evaluation metrics and human annotations show that TA-Seq2Seq can generate more informative and interesting responses, significantly outperforming state-of-the-art response generation models.

347 citations

Journal ArticleDOI
TL;DR: This critical review clearly indicates that silver catalysis provides a significant impetus to the rapid evolution of alkyne-based organic reactions, such as alkynylation, hydrofunctionalization, cycloaddition, cycloisomerization, and cascade reactions.
Abstract: Silver is a less expensive noble metal. Superior alkynophilicity due to π-coordination with the carbon-carbon triple bond makes silver salts ideal catalysts for alkyne-based organic reactions. This review highlights the progress in alkyne chemistry via silver catalysis primarily over the past five years (ca. 2010-2014). The discussion is developed in terms of the bond type formed with the acetylenic carbon (i.e., C-C, C-N, C-O, C-Halo, C-P and C-B). Compared with other coinage metals such as Au and Cu, silver catalysis is frequently observed to be unique. This critical review clearly indicates that silver catalysis provides a significant impetus to the rapid evolution of alkyne-based organic reactions, such as alkynylation, hydrofunctionalization, cycloaddition, cycloisomerization, and cascade reactions.

346 citations

Journal ArticleDOI
Xiaoyan Cui1, Zhi-Yuan Gu1, Dong-Qing Jiang1, Yan Li1, He-Fang Wang1, Xiu-Ping Yan1 
TL;DR: The first example of the utilization of MOFs for solid-phase microextraction (SPME) is reported, with MOF-199 with unique pores and open metal sites employed as the coating for SPME fiber to extract volatile and harmful benzene homologues.
Abstract: Metal−organic frameworks (MOFs) have received great attention due to their fascinating structures and intriguing potential applications in various fields. Herein, we report the first example of the utilization of MOFs for solid-phase microextraction (SPME). MOF-199 with unique pores and open metal sites (Lewis acid sites) was employed as the coating for SPME fiber to extract volatile and harmful benzene homologues. The SPME fiber was fabricated by in situ hydrothermal growth of thin MOF-199 films on etched stainless steel wire. The MOF-199-coated fiber not only offered large enhancement factors from 19 613 (benzene) to 110 860 (p-xylene), but also exhibited wide linearity with 3 orders of magnitude for the tested benzene homologues. The limits of detection for the benzene homologues were 8.3−23.3 ng L−1. The relative standard deviation (RSD) for six replicate extractions using one SPME fiber ranged from 2.0% to 7.7%. The fiber-to-fiber reproducibility for three parallel prepared fibers was 3.5%−9.4% (RSD)...

346 citations


Authors

Showing all 43397 results

NameH-indexPapersCitations
Yi Chen2174342293080
Peidong Yang183562144351
Jie Zhang1784857221720
Yang Yang1712644153049
Qiang Zhang1611137100950
Bin Liu138218187085
Jun Chen136185677368
Hui Li1352982105903
Jie Liu131153168891
Han Zhang13097058863
Jian Zhou128300791402
Chao Zhang127311984711
Wei Chen122194689460
Xuan Zhang119153065398
Yang Li117131963111
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022925
20215,270
20204,645
20194,261
20183,520