scispace - formally typeset
Search or ask a question

Showing papers by "National Autonomous University of Mexico published in 2020"


Journal ArticleDOI
Theo Vos1, Theo Vos2, Theo Vos3, Stephen S Lim  +2416 moreInstitutions (246)
TL;DR: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates, and there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries.

5,802 citations


Journal ArticleDOI
TL;DR: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure.

3,059 citations


Journal ArticleDOI
TL;DR: A panel of international experts from 22 countries propose a new definition of metabolic-dysfunction-associated fatty liver disease that is both comprehensive yet simple for the diagnosis of MAFLD and is independent of other liver diseases.

1,705 citations


Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

882 citations


Journal ArticleDOI
Joan B. Soriano1, Parkes J Kendrick2, Katherine R. Paulson2, Vinay Gupta2  +311 moreInstitutions (178)
TL;DR: It is shown that chronic respiratory diseases remain a leading cause of death and disability worldwide, with growth in absolute numbers but sharp declines in several age-standardised estimators since 1990.

829 citations


Journal ArticleDOI
TL;DR: The most recent data release from the Sloan Digital Sky Surveys (SDSS-IV) is DR16 as mentioned in this paper, which is the fourth and penultimate from the fourth phase of the survey.
Abstract: This paper documents the sixteenth data release (DR16) from the Sloan Digital Sky Surveys; the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the southern hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey (TDSS) and new data from the SPectroscopic IDentification of ERosita Survey (SPIDERS) programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).

803 citations


Journal ArticleDOI
11 Mar 2020-Nature
TL;DR: The gasdermin E protein is shown to act as a tumour suppressor: it is cleaved by caspase 3 and granzyme B and leads to pyroptosis of cancer cells, provoking an immune response to the tumour.
Abstract: Cleavage of the gasdermin proteins to produce pore-forming amino-terminal fragments causes inflammatory cell death (pyroptosis)1. Gasdermin E (GSDME, also known as DFNA5)—mutated in familial ageing-related hearing loss2—can be cleaved by caspase 3, thereby converting noninflammatory apoptosis to pyroptosis in GSDME-expressing cells3–5. GSDME expression is suppressed in many cancers, and reduced GSDME levels are associated with decreased survival as a result of breast cancer2,6, suggesting that GSDME might be a tumour suppressor. Here we show that 20 of 22 tested cancer-associated GSDME mutations reduce GSDME function. In mice, knocking out Gsdme in GSDME-expressing tumours enhances, whereas ectopic expression in Gsdme-repressed tumours inhibits, tumour growth. This tumour suppression is mediated by killer cytotoxic lymphocytes: it is abrogated in perforin-deficient mice or mice depleted of killer lymphocytes. GSDME expression enhances the phagocytosis of tumour cells by tumour-associated macrophages, as well as the number and functions of tumour-infiltrating natural-killer and CD8+ T lymphocytes. Killer-cell granzyme B also activates caspase-independent pyroptosis in target cells by directly cleaving GSDME at the same site as caspase 3. Uncleavable or pore-defective GSDME proteins are not tumour suppressive. Thus, tumour GSDME acts as a tumour suppressor by activating pyroptosis, enhancing anti-tumour immunity. The gasdermin E protein is shown to act as a tumour suppressor: it is cleaved by caspase 3 and granzyme B and leads to pyroptosis of cancer cells, provoking an immune response to the tumour.

711 citations


Journal ArticleDOI
TL;DR: A brief introduction of SVMs is provided, many applications are described and challenges and trends are summarized, especially in the some fields.

611 citations


Journal ArticleDOI
20 Jan 2020
TL;DR: In this article, the authors propose a set of four general principles that underlie high-quality knowledge co-production for sustainability research, and offer practical guidance on how to engage in meaningful co-productive practices, and how to evaluate their quality and success.
Abstract: Research practice, funding agencies and global science organizations suggest that research aimed at addressing sustainability challenges is most effective when ‘co-produced’ by academics and non-academics. Co-production promises to address the complex nature of contemporary sustainability challenges better than more traditional scientific approaches. But definitions of knowledge co-production are diverse and often contradictory. We propose a set of four general principles that underlie high-quality knowledge co-production for sustainability research. Using these principles, we offer practical guidance on how to engage in meaningful co-productive practices, and how to evaluate their quality and success.

607 citations


Journal ArticleDOI
TL;DR: COVID-19 infections and deaths among HCWs follow that of the general population around the world, and the need for universal guidelines for testing and reporting of infections in HCWs is highlighted.
Abstract: Objectives To estimate COVID-19 infections and deaths in healthcare workers (HCWs) from a global perspective during the early phases of the pandemic. Design Systematic review. Methods Two parallel searches of academic bibliographic databases and grey literature were undertaken until 8 May 2020. Governments were also contacted for further information where possible. There were no restrictions on language, information sources used, publication status and types of sources of evidence. The AACODS checklist or the National Institutes of Health study quality assessment tools were used to appraise each source of evidence. Outcome measures Publication characteristics, country-specific data points, COVID-19-specific data, demographics of affected HCWs and public health measures employed. Results A total of 152 888 infections and 1413 deaths were reported. Infections were mainly in women (71.6%, n=14 058) and nurses (38.6%, n=10 706), but deaths were mainly in men (70.8%, n=550) and doctors (51.4%, n=525). Limited data suggested that general practitioners and mental health nurses were the highest risk specialities for deaths. There were 37.2 deaths reported per 100 infections for HCWs aged over 70 years. Europe had the highest absolute numbers of reported infections (119 628) and deaths (712), but the Eastern Mediterranean region had the highest number of reported deaths per 100 infections (5.7). Conclusions COVID-19 infections and deaths among HCWs follow that of the general population around the world. The reasons for gender and specialty differences require further exploration, as do the low rates reported in Africa and India. Although physicians working in certain specialities may be considered high risk due to exposure to oronasal secretions, the risk to other specialities must not be underestimated. Elderly HCWs may require assigning to less risky settings such as telemedicine or administrative positions. Our pragmatic approach provides general trends, and highlights the need for universal guidelines for testing and reporting of infections in HCWs. © Author(s) (or their employer(s)) 2020.

424 citations


Journal ArticleDOI
TL;DR: This review concludes that, to fight COVID-19, it is important to face the challenges from an interdisciplinary perspective, with proactive planning, international solidarity and a global perspective.

Journal ArticleDOI
TL;DR: The human-caused sixth mass extinction is likely accelerating for several reasons, including: many of the species that have been driven to the brink will likely become extinct soon, and the distribution of those species highly coincides with hundreds of other endangered species, surviving in regions with high human impacts, suggesting ongoing regional biodiversity collapses.
Abstract: The ongoing sixth mass species extinction is the result of the destruction of component populations leading to eventual extirpation of entire species. Populations and species extinctions have severe implications for society through the degradation of ecosystem services. Here we assess the extinction crisis from a different perspective. We examine 29,400 species of terrestrial vertebrates, and determine which are on the brink of extinction because they have fewer than 1,000 individuals. There are 515 species on the brink (1.7% of the evaluated vertebrates). Around 94% of the populations of 77 mammal and bird species on the brink have been lost in the last century. Assuming all species on the brink have similar trends, more than 237,000 populations of those species have vanished since 1900. We conclude the human-caused sixth mass extinction is likely accelerating for several reasons. First, many of the species that have been driven to the brink will likely become extinct soon. Second, the distribution of those species highly coincides with hundreds of other endangered species, surviving in regions with high human impacts, suggesting ongoing regional biodiversity collapses. Third, close ecological interactions of species on the brink tend to move other species toward annihilation when they disappear-extinction breeds extinctions. Finally, human pressures on the biosphere are growing rapidly, and a recent example is the current coronavirus disease 2019 (Covid-19) pandemic, linked to wildlife trade. Our results reemphasize the extreme urgency of taking much-expanded worldwide actions to save wild species and humanity's crucial life-support systems from this existential threat.

Journal ArticleDOI
09 Jan 2020-Nature
TL;DR: Only one repeating fast radio burst has been localized, to an irregular dwarf galaxy; now another is found to come from a star-forming region of a nearby spiral galaxy, suggesting that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.
Abstract: Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes1,2. Their physical origin remains unknown, but dozens of possible models have been postulated3. Some FRB sources exhibit repeat bursts4–7. Although over a hundred FRB sources have been discovered8, only four have been localized and associated with a host galaxy9–12, and just one of these four is known to emit repeating FRBs9. The properties of the host galaxies, and the local environments of FRBs, could provide important clues about their physical origins. The first known repeating FRB, however, was localized to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources were localized to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localization of a second repeating FRB source6, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift 0.0337 ± 0.0002) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure6 further distinguish the local environment of FRB 180916.J0158+65 from that of the single previously localized repeating FRB source, FRB 121102. This suggests that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments. Only one repeating fast radio burst has been localized, to an irregular dwarf galaxy; now another is found to come from a star-forming region of a nearby spiral galaxy.

Journal ArticleDOI
TL;DR: A mechanistic approach to evaluate risk for complications and lethality attributable to COVID-19 considering the effect of obesity and diabetes in Mexico is proposed and offers a clinical tool for quick determination of high-risk susceptibility patients in a first contact scenario.
Abstract: BACKGROUND: The SARS-CoV-2 outbreak poses a challenge to health care systems due to its high complication rates in patients with cardiometabolic diseases. Here, we identify risk factors and propose a clinical score to predict COVID-19 lethality, including specific factors for diabetes and obesity, and its role in improving risk prediction. METHODS: We obtained data of confirmed and negative COVID-19 cases and their demographic and health characteristics from the General Directorate of Epidemiology of the Mexican Ministry of Health. We investigated specific risk factors associated to COVID-19 positivity and mortality and explored the impact of diabetes and obesity on modifying COVID-19-related lethality. Finally, we built a clinical score to predict COVID-19 lethality. RESULTS: Among the 177 133 subjects at the time of writing this report (May 18, 2020), we observed 51 633 subjects with SARS-CoV-2 and 5,332 deaths. Risk factors for lethality in COVID-19 include early-onset diabetes, obesity, chronic obstructive pulmonary disease, advanced age, hypertension, immunosuppression, and chronic kidney disease (CKD); we observed that obesity mediates 49.5% of the effect of diabetes on COVID-19 lethality. Early-onset diabetes conferred an increased risk of hospitalization and obesity conferred an increased risk for intensive care unit admission and intubation. Our predictive score for COVID-19 lethality included age ≥ 65 years, diabetes, early-onset diabetes, obesity, age < 40 years, CKD, hypertension, and immunosuppression and significantly discriminates lethal from non-lethal COVID-19 cases (C-statistic = 0.823). CONCLUSIONS: Here, we propose a mechanistic approach to evaluate the risk for complications and lethality attributable to COVID-19, considering the effect of obesity and diabetes in Mexico. Our score offers a clinical tool for quick determination of high-risk susceptibility patients in a first-contact scenario.

Journal ArticleDOI
Edoardo Aprà1, Eric J. Bylaska1, W. A. de Jong2, Niranjan Govind1, Karol Kowalski1, T. P. Straatsma3, Marat Valiev1, H. J. J. van Dam4, Yuri Alexeev5, J. Anchell6, V. Anisimov5, Fredy W. Aquino, Raymond Atta-Fynn7, Jochen Autschbach8, Nicholas P. Bauman1, Jeffrey C. Becca9, David E. Bernholdt10, K. Bhaskaran-Nair11, Stuart Bogatko12, Piotr Borowski13, Jeffery S. Boschen14, Jiří Brabec15, Adam Bruner16, Emilie Cauet17, Y. Chen18, Gennady N. Chuev19, Christopher J. Cramer20, Jeff Daily1, M. J. O. Deegan, Thom H. Dunning21, Michel Dupuis8, Kenneth G. Dyall, George I. Fann10, Sean A. Fischer22, Alexandr Fonari23, Herbert A. Früchtl24, Laura Gagliardi20, Jorge Garza25, Nitin A. Gawande1, Soumen Ghosh20, Kurt R. Glaesemann1, Andreas W. Götz26, Jeff R. Hammond6, Volkhard Helms27, Eric D. Hermes28, Kimihiko Hirao, So Hirata29, Mathias Jacquelin2, Lasse Jensen9, Benny G. Johnson, Hannes Jónsson30, Ricky A. Kendall10, Michael Klemm6, Rika Kobayashi31, V. Konkov32, Sriram Krishnamoorthy1, M. Krishnan18, Zijing Lin33, Roberto D. Lins34, Rik J. Littlefield, Andrew J. Logsdail35, Kenneth Lopata36, Wan Yong Ma37, Aleksandr V. Marenich20, J. Martin del Campo38, Daniel Mejía-Rodríguez39, Justin E. Moore6, Jonathan M. Mullin, Takahito Nakajima, Daniel R. Nascimento1, Jeffrey A. Nichols10, P. J. Nichols40, J. Nieplocha1, Alberto Otero-de-la-Roza41, Bruce J. Palmer1, Ajay Panyala1, T. Pirojsirikul42, Bo Peng1, Roberto Peverati32, Jiri Pittner15, L. Pollack, Ryan M. Richard43, P. Sadayappan44, George C. Schatz45, William A. Shelton36, Daniel W. Silverstein46, D. M. A. Smith6, Thereza A. Soares47, Duo Song1, Marcel Swart, H. L. Taylor48, G. S. Thomas1, Vinod Tipparaju49, Donald G. Truhlar20, Kiril Tsemekhman, T. Van Voorhis50, Álvaro Vázquez-Mayagoitia5, Prakash Verma, Oreste Villa51, Abhinav Vishnu1, Konstantinos D. Vogiatzis52, Dunyou Wang53, John H. Weare26, Mark J. Williamson54, Theresa L. Windus14, Krzysztof Wolinski13, A. T. Wong, Qin Wu4, Chan-Shan Yang2, Q. Yu55, Martin Zacharias56, Zhiyong Zhang57, Yan Zhao58, Robert W. Harrison59 
Pacific Northwest National Laboratory1, Lawrence Berkeley National Laboratory2, National Center for Computational Sciences3, Brookhaven National Laboratory4, Argonne National Laboratory5, Intel6, University of Texas at Arlington7, State University of New York System8, Pennsylvania State University9, Oak Ridge National Laboratory10, Washington University in St. Louis11, Wellesley College12, Maria Curie-Skłodowska University13, Iowa State University14, Academy of Sciences of the Czech Republic15, University of Tennessee at Martin16, Université libre de Bruxelles17, Facebook18, Russian Academy of Sciences19, University of Minnesota20, University of Washington21, United States Naval Research Laboratory22, Georgia Institute of Technology23, University of St Andrews24, Universidad Autónoma Metropolitana25, University of California, San Diego26, Saarland University27, Sandia National Laboratories28, University of Illinois at Urbana–Champaign29, University of Iceland30, Australian National University31, Florida Institute of Technology32, University of Science and Technology of China33, Oswaldo Cruz Foundation34, Cardiff University35, Louisiana State University36, Chinese Academy of Sciences37, National Autonomous University of Mexico38, University of Florida39, Los Alamos National Laboratory40, University of Oviedo41, Prince of Songkla University42, Ames Laboratory43, University of Utah44, Northwestern University45, Universal Display Corporation46, Federal University of Pernambuco47, CD-adapco48, Cray49, Massachusetts Institute of Technology50, Nvidia51, University of Tennessee52, Shandong Normal University53, University of Cambridge54, Advanced Micro Devices55, Technische Universität München56, Stanford University57, Wuhan University of Technology58, Stony Brook University59
TL;DR: The NWChem computational chemistry suite is reviewed, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
Abstract: Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.

Journal ArticleDOI
31 Jul 2020
TL;DR: Restrictions on the use of public space and physical distancing have been key policy measures to reduce the transmission of COVID-19 and protect public health.
Abstract: Restrictions on the use of public space and physical distancing have been key policy measures to reduce the transmission of COVID-19 and protect public health. At the time of writing, one half of t...

Journal ArticleDOI
Rafael Lozano1, Nancy Fullman1, John Everett Mumford1, Megan Knight1  +902 moreInstitutions (380)
TL;DR: To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—the authors estimated additional population equivalents with UHC effective coverage from 2018 to 2023, and quantified frontiers of U HC effective coverage performance on the basis of pooled health spending per capita.

Journal ArticleDOI
TL;DR: The Very Large Array Sky Survey (VLASS) as discussed by the authors is a synoptic, all-sky radio sky survey with a unique combination of high angular resolution (≈2.5"), sensitivity (a 1σ goal of 70 μJy/beam in the coadded data), full linear Stokes polarimetry, time domain coverage, and wide bandwidth (2-4 GHz).
Abstract: The Very Large Array Sky Survey (VLASS) is a synoptic, all-sky radio sky survey with a unique combination of high angular resolution (≈2.5\"), sensitivity (a 1σ goal of 70 μJy/beam in the coadded data), full linear Stokes polarimetry, time domain coverage, and wide bandwidth (2-4 GHz). The first observations began in September 2017, and observing for the survey will finish in 2024. VLASS will use approximately 5500 hours of time on the Karl G. Jansky Very Large Array (VLA) to cover the whole sky visible to the VLA (Declination > −40∘), a total of 33,885 deg^2. The data will be taken in three epochs to allow the discovery of variable and transient radio sources. The survey is designed to engage radio astronomy experts, multi-wavelength astronomers, and citizen scientists alike. By utilizing an \"on the fly\" interferometry mode, the observing overheads are much reduced compared to a conventional pointed survey. In this paper, we present the science case and observational strategy for the survey, and also results from early survey observations.

Journal ArticleDOI
TL;DR: The Gut Microbiota is a complex microbial community that is organized around a network of metabolic interdependencies as discussed by the authors, which is vital for normal development and functioning of the human body, especially for the priming and maturation of the adaptive immune system.
Abstract: Advances in culture-independent research techniques have led to an increased understanding of the gut microbiota and the role it plays in health and disease. The intestine is populated by a complex microbial community that is organized around a network of metabolic interdependencies. It is now understood that the gut microbiota is vital for normal development and functioning of the human body, especially for the priming and maturation of the adaptive immune system. Antibiotic use can have several negative effects on the gut microbiota, including reduced species diversity, altered metabolic activity, and the selection of antibiotic-resistant organisms, which in turn can lead to antibiotic-associated diarrhea and recurrent Clostridioides difficile infections. There is also evidence that early childhood exposure to antibiotics can lead to several gastrointestinal, immunologic, and neurocognitive conditions. The increase in the use of antibiotics in recent years suggests that these problems are likely to become more acute or more prevalent in the future. Continued research into the structure and function of the gut microbiota is required to address this challenge.

Journal ArticleDOI
TL;DR: Five sources of anthropogenic pollution that affect marine and freshwater ecosystems are discussed: sewage, nutrients and terrigenous materials, crude oil, heavy metals and plastics, and the direct and indirect effects that these pollutants have on a range of aquatic organisms even when the pollutant source is distant from the sink.

Journal ArticleDOI
Christian Lieven1, Moritz Emanuel Beber1, Brett G. Olivier2, Frank Bergmann3, Meriç Ataman4, Parizad Babaei1, Jennifer A. Bartell1, Lars M. Blank5, Siddharth Chauhan6, Kevin Correia7, Christian Diener8, Christian Diener9, Andreas Dräger10, Birgitta E. Ebert5, Birgitta E. Ebert11, Janaka N. Edirisinghe12, José P. Faria12, Adam M. Feist1, Adam M. Feist6, Georgios Fengos4, Ronan M. T. Fleming13, Beatriz García-Jiménez14, Beatriz García-Jiménez15, Vassily Hatzimanikatis4, Wout van Helvoirt16, Wout van Helvoirt17, Christopher S. Henry12, Henning Hermjakob18, Markus J. Herrgård1, Ali Kaafarani1, Hyun Uk Kim19, Zachary A. King6, Steffen Klamt20, Edda Klipp21, Jasper J. Koehorst22, Matthias König21, Meiyappan Lakshmanan23, Dong-Yup Lee23, Dong-Yup Lee24, Sang Yup Lee19, Sang Yup Lee1, Sunjae Lee25, Sunjae Lee26, Nathan E. Lewis6, Filipe Liu12, Hongwu Ma27, Daniel Machado, Radhakrishnan Mahadevan7, Paulo Maia, Adil Mardinoglu26, Adil Mardinoglu25, Gregory L. Medlock28, Jonathan M. Monk6, Jens Nielsen1, Jens Nielsen29, Lars K. Nielsen11, Lars K. Nielsen1, Juan Nogales14, Intawat Nookaew30, Intawat Nookaew29, Bernhard O. Palsson6, Bernhard O. Palsson1, Jason A. Papin28, Kiran Raosaheb Patil, Mark G. Poolman31, Nathan D. Price9, Osbaldo Resendis-Antonio8, Anne Richelle6, Isabel Rocha32, Isabel Rocha33, Benjamin Sanchez29, Benjamin Sanchez1, Peter J. Schaap22, Rahuman S. Malik Sheriff18, Saeed Shoaie26, Saeed Shoaie25, Nikolaus Sonnenschein1, Bas Teusink2, Paulo Vilaça, Jon Olav Vik17, Judith A. H. Wodke21, Joana C. Xavier34, Qianqian Yuan27, Maksim Zakhartsev17, Cheng Zhang25 
TL;DR: A community effort to develop a test suite named MEMOTE (for metabolic model tests) to assess GEM quality, and advocate adoption of the latest version of the Systems Biology Markup Language level 3 flux balance constraints (SBML3FBC) package as the primary description and exchange format.
Abstract: We acknowledge D. Dannaher and A. Lopez for their supporting work on the Angular parts of MEMOTE; resources and support from the DTU Computing Center; J. Cardoso, S. Gudmundsson, K. Jensen and D. Lappa for their feedback on conceptual details; and P. D. Karp and I. Thiele for critically reviewing the manuscript. We thank J. Daniel, T. Kristjansdottir, J. Saez-Saez, S. Sulheim, and P. Tubergen for being early adopters of MEMOTE and for providing written testimonials. J.O.V. received the Research Council of Norway grants 244164 (GenoSysFat), 248792 (DigiSal) and 248810 (Digital Life Norway); M.Z. received the Research Council of Norway grant 244164 (GenoSysFat); C.L. received funding from the Innovation Fund Denmark (project “Environmentally Friendly Protein Production (EFPro2)”); C.L., A.K., N. S., M.B., M.A., D.M., P.M, B.J.S., P.V., K.R.P. and M.H. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 686070 (DD-DeCaF); B.G.O., F.T.B. and A.D. acknowledge funding from the US National Institutes of Health (NIH, grant number 2R01GM070923-13); A.D. was supported by infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections; N.E.L. received funding from NIGMS R35 GM119850, Novo Nordisk Foundation NNF10CC1016517 and the Keck Foundation; A.R. received a Lilly Innovation Fellowship Award; B.G.-J. and J. Nogales received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 686585 for the project LIAR, and the Spanish Ministry of Economy and Competitivity through the RobDcode grant (BIO2014-59528-JIN); L.M.B. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 633962 for project P4SB; R.F. received funding from the US Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant DE-SC0010429; A.M., C.Z., S.L. and J. Nielsen received funding from The Knut and Alice Wallenberg Foundation, Advanced Computing program, grant #DE-SC0010429; S.K.’s work was in part supported by the German Federal Ministry of Education and Research (de.NBI partner project “ModSim” (FKZ: 031L104B)); E.K. and J.A.H.W. were supported by the German Federal Ministry of Education and Research (project “SysToxChip”, FKZ 031A303A); M.K. is supported by the Federal Ministry of Education and Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant number 031L0054); J.A.P. and G.L.M. acknowledge funding from US National Institutes of Health (T32-LM012416, R01-AT010253, R01-GM108501) and the Wagner Foundation; G.L.M. acknowledges funding from a Grand Challenges Exploration Phase I grant (OPP1211869) from the Bill & Melinda Gates Foundation; H.H. and R.S.M.S. received funding from the Biotechnology and Biological Sciences Research Council MultiMod (BB/N019482/1); H.U.K. and S.Y.L. received funding from the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (grants NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through the National Research Foundation (NRF) of Korea; H.U.K. received funding from the Bio & Medical Technology Development Program of the NRF, the Ministry of Science and ICT (NRF-2018M3A9H3020459); P.B., B.J.S., Z.K., B.O.P., C.L., M.B., N.S., M.H. and A.F. received funding through Novo Nordisk Foundation through the Center for Biosustainability at the Technical University of Denmark (NNF10CC1016517); D.-Y.L. received funding from the Next-Generation BioGreen 21 Program (SSAC, PJ01334605), Rural Development Administration, Republic of Korea; G.F. was supported by the RobustYeast within ERA net project via SystemsX.ch; V.H. received funding from the ETH Domain and Swiss National Science Foundation; M.P. acknowledges Oxford Brookes University; J.C.X. received support via European Research Council (666053) to W.F. Martin; B.E.E. acknowledges funding through the CSIRO-UQ Synthetic Biology Alliance; C.D. is supported by a Washington Research Foundation Distinguished Investigator Award. I.N. received funding from National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) (grant P20GM125503).

Journal ArticleDOI
Sergei Põlme1, Sergei Põlme2, Kessy Abarenkov2, R. Henrik Nilsson3, Björn D. Lindahl4, Karina E. Clemmensen4, Håvard Kauserud5, Nhu H. Nguyen6, Rasmus Kjøller7, Scott T. Bates8, Petr Baldrian9, Tobias Guldberg Frøslev7, Kristjan Adojaan1, Alfredo Vizzini10, Ave Suija1, Donald H. Pfister11, Hans Otto Baral, Helle Järv12, Hugo Madrid13, Hugo Madrid14, Jenni Nordén, Jian-Kui Liu15, Julia Pawłowska16, Kadri Põldmaa1, Kadri Pärtel1, Kadri Runnel1, Karen Hansen17, Karl-Henrik Larsson, Kevin D. Hyde18, Marcelo Sandoval-Denis, Matthew E. Smith19, Merje Toome-Heller20, Nalin N. Wijayawardene, Nelson Menolli21, Nicole K. Reynolds19, Rein Drenkhan22, Sajeewa S. N. Maharachchikumbura15, Tatiana Baptista Gibertoni23, Thomas Læssøe7, William J. Davis24, Yuri Tokarev, Adriana Corrales25, Adriene Mayra Soares, Ahto Agan1, A. R. Machado23, Andrés Argüelles-Moyao26, Andrew P. Detheridge, Angelina de Meiras-Ottoni23, Annemieke Verbeken27, Arun Kumar Dutta28, Bao-Kai Cui29, C. K. Pradeep, César Marín30, Daniel E. Stanton, Daniyal Gohar1, Dhanushka N. Wanasinghe31, Eveli Otsing1, Farzad Aslani1, Gareth W. Griffith, Thorsten Lumbsch32, Hans-Peter Grossart33, Hans-Peter Grossart34, Hossein Masigol35, Ina Timling36, Inga Hiiesalu1, Jane Oja1, John Y. Kupagme1, József Geml, Julieta Alvarez-Manjarrez26, Kai Ilves1, Kaire Loit22, Kalev Adamson22, Kazuhide Nara37, Kati Küngas1, Keilor Rojas-Jimenez38, Krišs Bitenieks39, Laszlo Irinyi40, Laszlo Irinyi41, Laszlo Nagy, Liina Soonvald22, Li-Wei Zhou31, Lysett Wagner33, M. Catherine Aime8, Maarja Öpik1, María Isabel Mujica30, Martin Metsoja1, Martin Ryberg42, Martti Vasar1, Masao Murata37, Matthew P. Nelsen32, Michelle Cleary4, Milan C. Samarakoon18, Mingkwan Doilom31, Mohammad Bahram4, Mohammad Bahram1, Niloufar Hagh-Doust1, Olesya Dulya1, Peter R. Johnston43, Petr Kohout9, Qian Chen31, Qing Tian18, Rajasree Nandi44, Rasekh Amiri1, Rekhani H. Perera18, Renata dos Santos Chikowski23, Renato Lucio Mendes-Alvarenga23, Roberto Garibay-Orijel26, Robin Gielen1, Rungtiwa Phookamsak31, Ruvishika S. Jayawardena18, Saleh Rahimlou1, Samantha C. Karunarathna31, Saowaluck Tibpromma31, Shawn P. Brown45, Siim-Kaarel Sepp1, Sunil Mundra5, Sunil Mundra46, Zhu Hua Luo47, Tanay Bose48, Tanel Vahter1, Tarquin Netherway4, Teng Yang31, Tom W. May49, Torda Varga, Wei Li50, Victor R. M. Coimbra23, Virton Rodrigo Targino de Oliveira23, Vitor Xavier de Lima23, Vladimir S. Mikryukov1, Yong-Zhong Lu51, Yosuke Matsuda52, Yumiko Miyamoto53, Urmas Kõljalg1, Urmas Kõljalg2, Leho Tedersoo2, Leho Tedersoo1 
University of Tartu1, American Museum of Natural History2, University of Gothenburg3, Swedish University of Agricultural Sciences4, University of Oslo5, University of Hawaii at Manoa6, University of Copenhagen7, Purdue University8, Academy of Sciences of the Czech Republic9, University of Turin10, Harvard University11, Synlab Group12, Universidad Santo Tomás13, Universidad Mayor14, University of Electronic Science and Technology of China15, University of Warsaw16, Swedish Museum of Natural History17, Mae Fah Luang University18, University of Florida19, Laos Ministry of Agriculture and Forestry20, São Paulo Federal Institute of Education, Science and Technology21, Estonian University of Life Sciences22, Federal University of Pernambuco23, United States Department of Energy24, Del Rosario University25, National Autonomous University of Mexico26, Ghent University27, West Bengal State University28, Beijing Forestry University29, Pontifical Catholic University of Chile30, Chinese Academy of Sciences31, Field Museum of Natural History32, Leibniz Association33, University of Potsdam34, University of Gilan35, University of Alaska Fairbanks36, University of Tokyo37, University of Costa Rica38, Forest Research Institute39, Westmead Hospital40, University of Sydney41, Uppsala University42, Landcare Research43, University of Chittagong44, University of Memphis45, United Arab Emirates University46, Ministry of Land and Resources of the People's Republic of China47, University of Pretoria48, Royal Botanic Gardens49, Ocean University of China50, Guizhou University51, Mie University52, Hokkaido University53
TL;DR: Fungal traits and character database FungalTraits operating at genus and species hypothesis levels is presented in this article, which includes 17 lifestyle related traits of fungal and Stramenopila genera.
Abstract: The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.

Journal ArticleDOI
TL;DR: A general view of the current understanding on cells, phagocytic receptors and phases involved inphagocytosis is presented.
Abstract: Phagocytosis is a cellular process for ingesting and eliminating particles larger than 0.5 μm in diameter, including microorganisms, foreign substances, and apoptotic cells. Phagocytosis is found in many types of cells and it is, in consequence an essential process for tissue homeostasis. However, only specialized cells termed professional phagocytes accomplish phagocytosis with high efficiency. Macrophages, neutrophils, monocytes, dendritic cells, and osteoclasts are among these dedicated cells. These professional phagocytes express several phagocytic receptors that activate signaling pathways resulting in phagocytosis. The process of phagocytosis involves several phases: i) detection of the particle to be ingested, ii) activation of the internalization process, iii) formation of a specialized vacuole called phagosome, and iv) maturation of the phagosome to transform it into a phagolysosome. In this review, we present a general view of our current understanding on cells, phagocytic receptors and phases involved in phagocytosis.

Journal ArticleDOI
TL;DR: A brief overview of different conceptualisations of transformation, and a set of practical principles for effective research and action towards sustainability are outlined in this paper. But these approaches are not mutually exclusive.

Journal ArticleDOI
TL;DR: This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications, and presents strategies that address key challenges for the preparation of coordination cages that are soluble and stable in water.
Abstract: Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.

Journal ArticleDOI
TL;DR: The 196 parties to the Convention on Biological Diversity (CBD) will soon agree to a post-2020 global framework for conserving the three elements of biodiversity (genetic, species, and ecosystem diversity) while ensuring sustainable development and benefit sharing.

Journal ArticleDOI
15 May 2020-Cancer
TL;DR: In this paper, the authors describe phases of early detection program development, beginning with management strategies required for the diagnosis of clinically detectable disease based on awareness education and technical training, history and physical examination, and accurate tissue diagnosis, and highlight the challenges and opportunities of implementing successful breast cancer early detection programs, and the complex interplay of barriers and facilitators to achieving early detection for breast cancer in real world settings are considered.
Abstract: When breast cancer is detected and treated early, the chances of survival are very high. However, women in many settings face complex barriers to early detection, including social, economic, geographic, and other interrelated factors, which can limit their access to timely, affordable, and effective breast health care services. Previously, the Breast Health Global Initiative (BHGI) developed resource-stratified guidelines for the early detection and diagnosis of breast cancer. In this consensus article from the sixth BHGI Global Summit held in October 2018, the authors describe phases of early detection program development, beginning with management strategies required for the diagnosis of clinically detectable disease based on awareness education and technical training, history and physical examination, and accurate tissue diagnosis. The core issues address include finance and governance, which pertain to successful planning, implementation, and the iterative process of program improvement and are needed for a breast cancer early detection program to succeed in any resource setting. Examples are presented of implementation, process, and clinical outcome metrics that assist in program implementation monitoring. Country case examples are presented to highlight the challenges and opportunities of implementing successful breast cancer early detection programs, and the complex interplay of barriers and facilitators to achieving early detection for breast cancer in real-world settings are considered.

Journal ArticleDOI
TL;DR: The proposed landscape scenarios represent an optimal compromise between delivery of goods and services to humans and preserving most forest wildlife, and can therefore guide forest preservation and restoration strategies.
Abstract: Agriculture and development transform forest ecosystems to human-modified landscapes. Decades of research in ecology have generated myriad concepts for the appropriate management of these landscapes. Yet, these concepts are often contradictory and apply at different spatial scales, making the design of biodiversity-friendly landscapes challenging. Here, we combine concepts with empirical support to design optimal landscape scenarios for forest-dwelling species. The supported concepts indicate that appropriately sized landscapes should contain ≥ 40% forest cover, although higher percentages are likely needed in the tropics. Forest cover should be configured with c. 10% in a very large forest patch, and the remaining 30% in many evenly dispersed smaller patches and semi-natural treed elements (e.g. vegetation corridors). Importantly, the patches should be embedded in a high-quality matrix. The proposed landscape scenarios represent an optimal compromise between delivery of goods and services to humans and preserving most forest wildlife, and can therefore guide forest preservation and restoration strategies.

Journal ArticleDOI
Shaohong Feng1, Josefin Stiller2, Yuan Deng2, Joel Armstrong3  +166 moreInstitutions (77)
12 Nov 2020-Nature
TL;DR: The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA.
Abstract: Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.

Journal ArticleDOI
Thomas Lecocq1, Stephen Hicks2, Koen Van Noten1, Kasper van Wijk3, Paula Koelemeijer4, Raphael S. M. De Plaen5, Frédérick Massin6, Gregor Hillers7, Robert E. Anthony8, Maria-Theresia Apoloner9, Mario Arroyo-Solórzano10, Jelle Assink11, Pınar Büyükakpınar12, Pınar Büyükakpınar13, Andrea Cannata14, Andrea Cannata15, Flavio Cannavò15, Sebastián Carrasco16, Corentin Caudron17, Esteban J. Chaves, Dave Cornwell18, David Craig19, Olivier F. C. den Ouden20, Olivier F. C. den Ouden11, Jordi Diaz21, Stefanie Donner22, Christos Evangelidis, Läslo Evers11, Läslo Evers20, Benoit Fauville, Gonzalo A. Fernandez, Dimitrios Giannopoulos23, Steven J. Gibbons24, Társilo Girona25, Bogdan Grecu, Marc Grunberg26, György Hetényi27, Anna Horleston28, Adolfo Inza, Jessica C. E. Irving29, Jessica C. E. Irving28, Mohammadreza Jamalreyhani13, Mohammadreza Jamalreyhani30, Alan L. Kafka31, Mathijs Koymans11, Mathijs Koymans20, C. R. Labedz32, Eric Larose17, Nathaniel J. Lindsey33, Mika McKinnon34, Mika McKinnon35, T. Megies36, Meghan S. Miller37, William G. Minarik38, Louis Moresi37, Victor H. Márquez-Ramírez5, Martin Möllhoff19, Ian M. Nesbitt39, Shankho Niyogi40, Javier Ojeda41, Adrien Oth, Simon Richard Proud42, Jay J. Pulli43, Jay J. Pulli31, Lise Retailleau44, Annukka E. Rintamäki7, Claudio Satriano44, Martha K. Savage45, Shahar Shani-Kadmiel20, Reinoud Sleeman11, Efthimios Sokos46, Klaus Stammler22, Alexander E. Stott2, Shiba Subedi27, Mathilde B. Sørensen47, Taka'aki Taira48, Mar Tapia49, Fatih Turhan12, Ben A. van der Pluijm50, Mark Vanstone, Jérôme Vergne26, Tommi Vuorinen7, Tristram Warren42, Joachim Wassermann36, Han Xiao51 
Royal Observatory of Belgium1, Imperial College London2, University of Auckland3, Royal Holloway, University of London4, National Autonomous University of Mexico5, Swiss Seismological Service6, University of Helsinki7, United States Geological Survey8, Central Institution for Meteorology and Geodynamics9, University of Costa Rica10, Royal Netherlands Meteorological Institute11, Kandilli Observatory and Earthquake Research Institute12, University of Potsdam13, University of Catania14, National Institute of Geophysics and Volcanology15, University of Cologne16, University of Savoy17, King's College, Aberdeen18, Dublin Institute for Advanced Studies19, Delft University of Technology20, Spanish National Research Council21, Institute for Geosciences and Natural Resources22, Mediterranean University23, Norwegian Geotechnical Institute24, University of Alaska Fairbanks25, University of Strasbourg26, University of Lausanne27, University of Bristol28, Princeton University29, University of Tehran30, Boston College31, California Institute of Technology32, Stanford University33, University of British Columbia34, Search for extraterrestrial intelligence35, Ludwig Maximilian University of Munich36, Australian National University37, McGill University38, University of Maine39, University of California, Riverside40, University of Chile41, University of Oxford42, BBN Technologies43, Institut de Physique du Globe de Paris44, Victoria University of Wellington45, University of Patras46, University of Bergen47, University of California, Berkeley48, Institut d'Estudis Catalans49, University of Michigan50, University of California, Santa Barbara51
11 Sep 2020-Science
TL;DR: The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record and suggests that seismology provides an absolute, real-time estimate of human activities.
Abstract: Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.