scispace - formally typeset
Search or ask a question
Institution

National Autonomous University of Mexico

EducationMexico City, Distrito Federal, Mexico
About: National Autonomous University of Mexico is a education organization based out in Mexico City, Distrito Federal, Mexico. It is known for research contribution in the topics: Population & Galaxy. The organization has 72868 authors who have published 127797 publications receiving 2285543 citations. The organization is also known as: UNAM & Universidad Nacional Autónoma de México.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a spatially explicit assessment of pan-tropical wood fuel supply and demand is presented to estimate where harvest exceeds regrowth and the resultant GHG emissions for 2009.
Abstract: Over half of all wood harvested worldwide is used as fuel, supplying ∼9% of global primary energy. By depleting stocks of woody biomass, unsustainable harvesting can contribute to forest degradation, deforestation and climate change. However, past efforts to quantify woodfuel sustainability failed to provide credible results. We present a spatially explicit assessment of pan-tropical woodfuel supply and demand, calculate the degree to which woodfuel demand exceeds regrowth, and estimate woodfuel-related greenhouse-gas emissions for the year 2009. We estimate 27–34% of woodfuel harvested was unsustainable, with large geographic variations. Our estimates are lower than estimates from carbon offset projects, which are probably overstating the climate benefits of improved stoves. Approximately 275 million people live in woodfuel depletion ‘hotspots’—concentrated in South Asia and East Africa—where most demand is unsustainable. Emissions from woodfuels are 1.0–1.2 Gt CO2e yr−1 (1.9–2.3% of global emissions). Successful deployment and utilization of 100 million improved stoves could reduce this by 11–17%. At US$11 per tCO2e, these reductions would be worth over US$1 billion yr−1 in avoided greenhouse-gas emissions if black carbon were integrated into carbon markets. By identifying potential areas of woodfuel-driven degradation or deforestation, we inform the ongoing discussion about REDD-based approaches to climate change mitigation. Over half of the wood harvested globally is used as fuel. Unsustainable harvesting can deplete woody biomass, contributing to forest degradation, deforestation and climate change. A spatially explicit assessment of pan-tropical woodfuel supply and demand is used to estimate where harvest exceeds regrowth and the resultant GHG emissions for 2009.

354 citations

Journal ArticleDOI
TL;DR: The new phylogeny reveals seven new monophyletic clades of MADS-box sequences not specific to flowers, suggesting that complex regulatory networks involving several MADs-box genes, similar to those that control flower development, underlie development of vegetative structures.
Abstract: MADS-box genes encode transcriptional regulators involved in diverse aspects of plant development. Here we describe the cloning and mRNA spatio-temporal expression patterns of five new MADS-box genes from Arabidopsis: AGL16, AGL18, AGL19, AGL27 and AGL31. These genes will probably become important molecular tools for both evolutionary and functional analyses of vegetative structures. We mapped our data and previous expression patterns onto a new MADS-box phylogeny. These analyses suggest that the evolution of the MADS-box family has involved a rapid and simultaneous functional diversification in vegetative as well as reproductive structures. The hypothetical ancestral genes had broader expression patterns than more derived ones, which have been co-opted for putative specialized functions as suggested by their expression patterns. AGL27 and AGL31, which are closely related to the recently described flowering-time gene FLC (previously AGL25), are expressed in most plant tissues. AGL19 is specifically expressed in the outer layers of the root meristem (lateral root cap and epidermis) and in the central cylinder cells of mature roots. AGL18, which is most similar in sequence to the embryo-expressed AGL15 gene, is expressed in the endosperm and in developing male and female gametophytes, suggesting a role for AGL18 that is distinct from previously characterized MADS-box genes. Finally, AGL16 RNA accumulates in leaf guard cells and trichomes. Our new phylogeny reveals seven new monophyletic clades of MADS-box sequences not specific to flowers, suggesting that complex regulatory networks involving several MADS-box genes, similar to those that control flower development, underlie development of vegetative structures.

353 citations

Journal ArticleDOI
TL;DR: Using ethanologenic Escherichia coli LY01 as the biocatalyst, the results indicate that the optimal lime addition for detoxification varies and depends on the concentration of mineral acids and organic acids in each hydrolysate.
Abstract: The hydrolysis of hemicellulose to monomeric sugars by dilute acid hydrolysis is accompanied by the production of inhibitors that retard microbial fermentation. Treatment of hot hydrolysate with Ca(OH)(2) (overliming) is an effective method for detoxification. Using ethanologenic Escherichia coli LY01 as the biocatalyst, our results indicate that the optimal lime addition for detoxification varies and depends on the concentration of mineral acids and organic acids in each hydrolysate. This optimum was shown to be readily predicted on the basis of the titration of hydrolysate with 2 N NaOH at ambient temperature to either pH 7.0 or pH 11.0. The average composition of 15 hydrolysates prior to treatment was as follows (per L): 95.24 +/- 7.29 g sugar, 5.3 +/- 2.99 g acetic acid, 1.305 +/- 0.288 g total furans (furfural and hydroxymethylfurfural), and 2.86 +/- 0.34 g phenolic compounds. Optimal overliming resulted in a 51 +/- 9% reduction of total furans, a 41 +/- 6% reduction in phenolic compounds, and a 8.7 +/- 4.5% decline in sugar. Acetic acid levels were unchanged. Considering the similarity of microorganisms, it is possible that the titration method described here may also prove useful for detoxification and fermentation processes using other microbial biocatalysts.

353 citations

Journal ArticleDOI
TL;DR: Individual sample replicates are used, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome and optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci.
Abstract: Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.

353 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize studies, most employing alternative methodological strategies, wherein less common and rare species are demonstrated to make significant contributions to ecosystem functioning, and suggest that further investigation into the effects of rare and less common species on ecosystem maintenance is sorely needed.
Abstract: Th er ole of diversity in the maintenance of ecosystems has been studied widely in the past decade. By correlating richness and diversity with basic ecosystem processes, these investigations lend support to the hypothesis that species diversity significantly influences ecosystem functioning and, in turn, provide support for the conservation of biodiversity. Nonetheless, the majority of these investigations demonstrate that conservation of a relatively small number of generally dominant species is sufficient to maintain most processes. Indeed, there is remarkably little evidence to support the contention that less common species, those likely of highest conservation concern, are important in the maintenance of ecosystem functioning. Here we summarize studies, most employing alternative methodological strategies, wherein less common and rare species are demonstrated to make significant contributions to ecosystem functioning. Evidence exists among studies of keystone species, aggregate effects of less common species, and species turnover. Our findings suggest that (1) less common species can make significant ecosystem contributions; (2) further investigation into the effects of rare and less common species on ecosystem maintenance is sorely needed; (3) further investigation should embrace a variety of approaches; and (4) until further research is conducted a prudent conservation approach is warranted wherein the contribution of less common species to ecosystem functioning is assumed.

353 citations


Authors

Showing all 73617 results

NameH-indexPapersCitations
Richard Peto183683231434
Anton M. Koekemoer1681127106796
Rory Collins162489193407
Timothy C. Beers156934102581
Vivek Sharma1503030136228
Kjell Fuxe142147989846
Prashant V. Kamat14072579259
Carmen García139150396925
Harold A. Mooney135450100404
Efe Yazgan12898679041
Roberto Maiolino12781661724
Peter Nugent12775492988
William R. Miller12560172570
Nicholas A. Kotov12357455210
John C. Wingfield12250952291
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Autonomous University of Madrid
52.8K papers, 1.6M citations

89% related

University of Granada
59.2K papers, 1.4M citations

89% related

University of Buenos Aires
50.9K papers, 1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023311
2022967
20217,481
20207,906
20197,107