scispace - formally typeset
Search or ask a question
Institution

National Autonomous University of Mexico

EducationMexico City, Distrito Federal, Mexico
About: National Autonomous University of Mexico is a education organization based out in Mexico City, Distrito Federal, Mexico. It is known for research contribution in the topics: Population & Galaxy. The organization has 72868 authors who have published 127797 publications receiving 2285543 citations. The organization is also known as: UNAM & Universidad Nacional Autónoma de México.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors compare the relationship between the peri-Gondwanan terranes and the northern Gondwana margin with the interpreted connection with Laurentia.
Abstract: Neoproterozoic tectonics is dominated by the amalgamation of the supercontinent Rodinia at ca. 1.0 Ga, its breakup at ca. 0.75 Ga, and the collision between East and West Gondwana between 0.6 and 0.5 Ga. The principal stages in this evolution are recorded by terranes along the northern margin of West Gondwana (Amazonia and West Africa), which continuously faced open oceans during the Neoproterozoic. Two types of these so-called peri-Gondwanan terranes were distributed along this margin in the late Neoproterozoic: (1) Avalonian-type terranes (e.g. West Avalonia, East Avalonia, Carolina, Moravia-Silesia, Oaxaquia, Chortis block that originated from ca. 1.3 to 1.0 Ga juvenile crust within the Panthalassa-type ocean surrounding Rodinia and were accreted to the northern Gondwanan margin by 650 Ma, and (2) Cadomian-type terranes (North Armorica, Saxo-Thuringia, Moldanubia, and fringing terranes South Armorica, Ossa Morena and Tepla-Barrandian) formed along the West African margin by recycling ancient (2–3 Ga) West African crust. Subsequently detached from Gondwana, these terranes are now located within the Appalachian, Caledonide and Variscan orogens of North America and western Europe. Inferred relationships between these peri-Gondwanan terranes and the northern Gondwanan margin can be compared with paleomagnetically constrained movements interpreted for the Amazonian and West African cratons for the interval ca. 800–500 Ma. Since Amazonia is paleomagnetically unconstrained during this interval, in most tectonic syntheses its location is inferred from an interpreted connection with Laurentia. Hence, such an analysis has implications for Laurentia-Gondwana connections and for high latitude versus low latitude models for Laurentia in the interval ca. 615–570 Ma. In the high latitude model, Laurentia-Amazonia would have drifted rapidly south during this interval, and subduction along its leading edge would provide a geodynamic explanation for the voluminous magmatism evident in Neoproterozoic terranes, in a manner analogous to the Mesozoic-Cenozoic westward drift of North America and South America and subduction-related magmatism along the eastern margin of the Pacific ocean. On the other hand, if Laurentia-Amazonia remained at low latitudes during this interval, the most likely explanation for late Neoproterozoic peri-Gondwanan magmatism is the re-establishment of subduction zones following terrane accretion at ca. 650 Ma. Available paleomagnetic data for both West and East Avalonia show systematically lower paleolatitudes than predicted by these analyses, implying that more paleomagnetic data are required to document the movement histories of Laurentia, West Gondwana and the peri-Gondwanan terranes, and test the connections between them.

275 citations

Journal ArticleDOI
TL;DR: It is suggested that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization.
Abstract: Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization.

275 citations

Journal ArticleDOI
TL;DR: A pivotal link in the Arc signal transduction pathway connecting the redox state of the quinone pool to the transcriptional apparatus is elucidated and the molecular mechanism of kinase silencing involves the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation.
Abstract: Escherichia coli senses and signals anoxic or low redox conditions in its growth environment by the Arc two-component system. Under anaerobic conditions, the ArcB sensor kinase autophosphorylates and transphosphorylates ArcA, a global transcriptional regulator that controls the expression of numerous operons involved in respiratory or fermentative metabolism. Under aerobic conditions, the kinase activity of ArcB is inhibited by the quinone electron carriers that act as direct negative signals. Here, we show that the molecular mechanism of kinase silencing involves the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation, a reaction in which the quinones provide the source of oxidative power. Thus, a pivotal link in the Arc signal transduction pathway connecting the redox state of the quinone pool to the transcriptional apparatus is elucidated.

274 citations

Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Andrew Marshall Adare4  +963 moreInstitutions (95)
TL;DR: In this paper, the ALICE measurement of K^0_S and Lambda production at midrapidity in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV is presented.
Abstract: The ALICE measurement of K^0_S and {\Lambda} production at mid-rapidity in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4 GeV/c (0.6 GeV/c for {\Lambda}) to 12 GeV/c. The pT dependence of the {\Lambda}/K^0_S ratios exhibits maxima in the vicinity of 3 GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at sqrt(s) = 0.9 TeV and at sqrt(s) = 7 TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2 GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the {\Lambda}/K^0_S ratio.

274 citations

Journal ArticleDOI
TL;DR: In this article, a geochemical and geochronological analysis of zircon cores from the Aghbar trachytic sill and from the Bou Madine rhyolitic dome has been shown to be of Statherian age (ca. 1600-1800 Ma).

274 citations


Authors

Showing all 73617 results

NameH-indexPapersCitations
Richard Peto183683231434
Anton M. Koekemoer1681127106796
Rory Collins162489193407
Timothy C. Beers156934102581
Vivek Sharma1503030136228
Kjell Fuxe142147989846
Prashant V. Kamat14072579259
Carmen García139150396925
Harold A. Mooney135450100404
Efe Yazgan12898679041
Roberto Maiolino12781661724
Peter Nugent12775492988
William R. Miller12560172570
Nicholas A. Kotov12357455210
John C. Wingfield12250952291
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Autonomous University of Madrid
52.8K papers, 1.6M citations

89% related

University of Granada
59.2K papers, 1.4M citations

89% related

University of Buenos Aires
50.9K papers, 1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023311
2022967
20217,481
20207,906
20197,107