scispace - formally typeset
Search or ask a question
Institution

National Autonomous University of Mexico

EducationMexico City, Distrito Federal, Mexico
About: National Autonomous University of Mexico is a education organization based out in Mexico City, Distrito Federal, Mexico. It is known for research contribution in the topics: Population & Galaxy. The organization has 72868 authors who have published 127797 publications receiving 2285543 citations. The organization is also known as: UNAM & Universidad Nacional Autónoma de México.


Papers
More filters
Journal ArticleDOI
07 Dec 2007-Science
TL;DR: It is suggested that cadherin promotes Bt toxicity by facilitating toxin oligomerization and it is demonstrated that the modified Bt toxins may be useful against pests resistant to standard BT toxins.
Abstract: The evolution of insect resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins that are widely used in sprays and transgenic crops. Resistance to Bt toxins in some insects is linked with mutations that disrupt a toxin-binding cadherin protein. We show that susceptibility to the Bt toxin Cry1Ab was reduced by cadherin gene silencing with RNA interference in Manduca sexta, confirming cadherin's role in Bt toxicity. Native Cry1A toxins required cadherin to form oligomers, but modified Cry1A toxins lacking one alpha-helix did not. The modified toxins killed cadherin-silenced M. sexta and Bt-resistant Pectinophora gossypiella that had cadherin deletion mutations. Our findings suggest that cadherin promotes Bt toxicity by facilitating toxin oligomerization and demonstrate that the modified Bt toxins may be useful against pests resistant to standard Bt toxins.

262 citations

Journal ArticleDOI
TL;DR: In this paper, the XRD patterns show that the films are of hexagonal phase with preferred (0.0.2) orientation and the grain size increases with the thickness of the film.

262 citations

Journal ArticleDOI
TL;DR: In this article, an on-farm research project was conducted in the municipality of Chilon, Chiapas, Mexico, with the objectives of investigating the effect of shade structure on coffee grain yield and assessing the potential uses of associated plant species.

261 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the Fourier transform of the average of the cross correlation of motion between two points within an elastic medium is proportional to the imaginary part of the exact Green's tensor function between these points, provided the energy ratio ES / EP is the one predicted by equipartition in two and three dimensions.
Abstract: In realistic materials, multiple scattering takes place and average field intensities or energy densities follow diffusive processes. Multiple P to S energy conversions by the random inhomogeneities result in equipartition of elastic waves, which means that in the phase space the available elastic energy is distributed among all the possible states of P and S waves, with equal amounts in average. In such diffusive regimes, the P to S energy ratio equilibrates in a universal way independent of the particular details of the scattering. We study the canonical problem of isotropic plane waves in an elastic medium and show that the Fourier transform of azimuthal average of the cross correlation of motion between two points within an elastic medium is proportional to the imaginary part of the exact Green’s tensor function between these points, provided the energy ratio ES / EP is the one predicted by equipartition in two and three dimensions, respectively. These results clearly show that equipartition is a necessary condition to retrieve the exact Green’s function from correlations of the elastic field. However, even if there is not an equipartitioned regime and correlations do not allow to retrieve precisely the exact Green’s function, the correlations may provide valuable results of physical significance by reconstructing specific arrivals.

261 citations

Journal ArticleDOI
22 Dec 2017-Science
TL;DR: It is proposed that RALF34 replaces RalF4 and RALf19 at the interface of pollen tube–female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.
Abstract: In flowering plants, fertilization requires complex cell-to-cell communication events between the pollen tube and the female reproductive tissues, which are controlled by extracellular signaling molecules interacting with receptors at the pollen tube surface. We found that two such receptors in Arabidopsis, BUPS1 and BUPS2, and their peptide ligands, RALF4 and RALF19, are pollen tube-expressed and are required to maintain pollen tube integrity. BUPS1 and BUPS2 interact with receptors ANXUR1 and ANXUR2 via their ectodomains, and both sets of receptors bind RALF4 and RALF19. These receptor-ligand interactions are in competition with the female-derived ligand RALF34, which induces pollen tube bursting at nanomolar concentrations. We propose that RALF34 replaces RALF4 and RALF19 at the interface of pollen tube-female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.

260 citations


Authors

Showing all 73617 results

NameH-indexPapersCitations
Richard Peto183683231434
Anton M. Koekemoer1681127106796
Rory Collins162489193407
Timothy C. Beers156934102581
Vivek Sharma1503030136228
Kjell Fuxe142147989846
Prashant V. Kamat14072579259
Carmen García139150396925
Harold A. Mooney135450100404
Efe Yazgan12898679041
Roberto Maiolino12781661724
Peter Nugent12775492988
William R. Miller12560172570
Nicholas A. Kotov12357455210
John C. Wingfield12250952291
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Autonomous University of Madrid
52.8K papers, 1.6M citations

89% related

University of Granada
59.2K papers, 1.4M citations

89% related

University of Buenos Aires
50.9K papers, 1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023311
2022967
20217,481
20207,906
20197,107