scispace - formally typeset
Search or ask a question
Institution

National Autonomous University of Mexico

EducationMexico City, Distrito Federal, Mexico
About: National Autonomous University of Mexico is a education organization based out in Mexico City, Distrito Federal, Mexico. It is known for research contribution in the topics: Population & Galaxy. The organization has 72868 authors who have published 127797 publications receiving 2285543 citations. The organization is also known as: UNAM & Universidad Nacional Autónoma de México.


Papers
More filters
Journal ArticleDOI
30 May 2003-Science
TL;DR: It is suggested that irrespective of the causes of their emergence, stress-induced mutations participate in adaptive evolution and could be a by-product of genetic strategies for improving survival under stress.
Abstract: The evolutionary significance of stress-induced mutagenesis was evaluated by studying mutagenesis in aging colonies (MAC) of Escherichia coli natural isolates. A large fraction of isolates exhibited a strong MAC, and the high MAC variability reflected the diversity of selective pressures in ecological niches. MAC depends on starvation, oxygen, and RpoS and adenosine 3,5-monophosphate regulons; thus it may be a by-product of genetic strategies for improving survival under stress. MAC could also be selected through beneficial mutations that it generates, as shown by computer modeling and the patterns of stressinducible and constitutive mutagenesis. We suggest that irrespective of the causes of their emergence, stress-induced mutations participate in adaptive

715 citations

Journal ArticleDOI
TL;DR: The worldwide geographical distribution of gallbladder cancer is reported, the main etiologic hypotheses are reviewed, and some comments on perspectives for prevention are provided.
Abstract: Gallbladder cancer is usually associated with gallstone disease, late diagnosis, unsatisfactory treatment, and poor prognosis. We report here the worldwide geographical distribution of gallbladder cancer, review the main etiologic hypotheses, and provide some comments on perspectives for prevention. The highest incidence rate of gallbladder cancer is found among populations of the Andean area, North American Indians, and Mexican Americans. Gallbladder cancer is up to three times higher among women than men in all populations. The highest incidence rates in Europe are found in Poland, the Czech Republic, and Slovakia. Incidence rates in other regions of the world are relatively low. The highest mortality rates are also reported from South America, 3.5-15.5 per 100,000 among Chilean Mapuche Indians, Bolivians, and Chilean Hispanics. Intermediate rates, 3.7 to 9.1 per 100,000, are reported from Peru, Ecuador, Colombia, and Brazil. Mortality rates are low in North America, with the exception of high rates among American Indians in New Mexico (11.3 per 100,000) and among Mexican Americans. The main associated risk factors identified so far include cholelithiasis (especially untreated chronic symptomatic gallstones), obesity, reproductive factors, chronic infections of the gallbladder, and environmental exposure to specific chemicals. These suspected factors likely represent promoters of carcinogenesis. The main limitations of epidemiologic studies on gallbladder cancer are the small sample sizes and specific problems in quantifying exposure to putative risk factors. The natural history of gallbladder disease should be characterized to support the allocation of more resources for early treatment of symptomatic gallbladder disease in high-risk populations. Secondary prevention of gallbladder cancer could be effective if supported by cost-effective studies of prophylactic cholecystectomy among asymptomatic gallstone patients in high-risk areas.

713 citations

Journal ArticleDOI
11 Mar 2020-Nature
TL;DR: The gasdermin E protein is shown to act as a tumour suppressor: it is cleaved by caspase 3 and granzyme B and leads to pyroptosis of cancer cells, provoking an immune response to the tumour.
Abstract: Cleavage of the gasdermin proteins to produce pore-forming amino-terminal fragments causes inflammatory cell death (pyroptosis)1. Gasdermin E (GSDME, also known as DFNA5)—mutated in familial ageing-related hearing loss2—can be cleaved by caspase 3, thereby converting noninflammatory apoptosis to pyroptosis in GSDME-expressing cells3–5. GSDME expression is suppressed in many cancers, and reduced GSDME levels are associated with decreased survival as a result of breast cancer2,6, suggesting that GSDME might be a tumour suppressor. Here we show that 20 of 22 tested cancer-associated GSDME mutations reduce GSDME function. In mice, knocking out Gsdme in GSDME-expressing tumours enhances, whereas ectopic expression in Gsdme-repressed tumours inhibits, tumour growth. This tumour suppression is mediated by killer cytotoxic lymphocytes: it is abrogated in perforin-deficient mice or mice depleted of killer lymphocytes. GSDME expression enhances the phagocytosis of tumour cells by tumour-associated macrophages, as well as the number and functions of tumour-infiltrating natural-killer and CD8+ T lymphocytes. Killer-cell granzyme B also activates caspase-independent pyroptosis in target cells by directly cleaving GSDME at the same site as caspase 3. Uncleavable or pore-defective GSDME proteins are not tumour suppressive. Thus, tumour GSDME acts as a tumour suppressor by activating pyroptosis, enhancing anti-tumour immunity. The gasdermin E protein is shown to act as a tumour suppressor: it is cleaved by caspase 3 and granzyme B and leads to pyroptosis of cancer cells, provoking an immune response to the tumour.

711 citations

Journal ArticleDOI
01 Oct 1978-Gene
TL;DR: In vitro recombinant DNA techniques were used to construct two new cloning vehicles, pBR324 and pBR235, which permit the molecular cloning and easy selection of EcoRI, BamHI, HindIII, PstI, HincII, SalI, (XamI), Smal, ( XmaI), BglII and DpnII restriction generated DNA molecules.

708 citations

Journal ArticleDOI
TL;DR: The concept of neutrophils phenotypic and functional heterogeneity is presented and several neutrophil subpopulations reported to date are described and the role these sub Populations seem to play in homeostasis and disease is discussed.
Abstract: Neutrophils are the most abundant leukocytes in the circulation, and have been regarded as first line of defense in the innate arm of the immune system. They capture and destroy invading microorganisms, through phagocytosis and intracellular degradation, release of granules, and formation of neutrophil extracellular traps after detecting pathogens. Neutrophils also participate as mediators of inflammation. The classical view for these leukocytes is that neutrophils constitute a homogenous population of terminally differentiated cells with a unique function. However, evidence accumulated in recent years, has revealed that neutrophils present a large phenotypic heterogeneity and functional versatility, which place neutrophils as important modulators of both inflammation and immune responses. Indeed, the roles played by neutrophils in homeostatic conditions as well as in pathological inflammation and immune processes are the focus of a renovated interest in neutrophil biology. In this review, I present the concept of neutrophil phenotypic and functional heterogeneity and describe several neutrophil subpopulations reported to date. I also discuss the role these subpopulations seem to play in homeostasis and disease.

708 citations


Authors

Showing all 73617 results

NameH-indexPapersCitations
Richard Peto183683231434
Anton M. Koekemoer1681127106796
Rory Collins162489193407
Timothy C. Beers156934102581
Vivek Sharma1503030136228
Kjell Fuxe142147989846
Prashant V. Kamat14072579259
Carmen García139150396925
Harold A. Mooney135450100404
Efe Yazgan12898679041
Roberto Maiolino12781661724
Peter Nugent12775492988
William R. Miller12560172570
Nicholas A. Kotov12357455210
John C. Wingfield12250952291
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Autonomous University of Madrid
52.8K papers, 1.6M citations

89% related

University of Granada
59.2K papers, 1.4M citations

89% related

University of Buenos Aires
50.9K papers, 1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023311
2022967
20217,481
20207,906
20197,107