scispace - formally typeset
Search or ask a question
Institution

National Autonomous University of Mexico

EducationMexico City, Distrito Federal, Mexico
About: National Autonomous University of Mexico is a education organization based out in Mexico City, Distrito Federal, Mexico. It is known for research contribution in the topics: Population & Galaxy. The organization has 72868 authors who have published 127797 publications receiving 2285543 citations. The organization is also known as: UNAM & Universidad Nacional Autónoma de México.


Papers
More filters
Journal ArticleDOI
TL;DR: The mid-summer drought is associated with the meridional migration of the intertropical convergence zone (ITCZ) and its double crossing over Central America but rather with fluctuations in the intensity and location of the eastern Pacific ITCZ as discussed by the authors.
Abstract: The annual cycle of precipitation over the southern part of Mexico and Central America exhibits a bimodal distribution with maxima during June and September–October and a relative minimum during July and August, known as the midsummer drought (MSD). The MSD is not associated with the meridional migration of the intertropical convergence zone (ITCZ) and its double crossing over Central America but rather with fluctuations in the intensity and location of the eastern Pacific ITCZ. During the transition from intense to weak (weak to intense) convective activity, the trade winds over the Caribbean strengthen (weaken). Such acceleration in the trade winds is part of the dynamic response of the low-level atmosphere to the magnitude of the convective forcing in the ITCZ. The intensification of the trade winds during July and August and the orographic forcing of the mountains over most of Central America result in maximum precipitation along the Caribbean coast and minimum precipitation along the Pacific...

644 citations

Journal ArticleDOI
TL;DR: So-called sliding modes are introduced, which become main operation modes in the variable structure systems (VSS) and reveal their main drawback: the so-called chattering effect, i.e., dangerous high-frequency vibrations of the controlled system.
Abstract: One of the most important control problems is control under heavy uncertainty conditions. While there are a number of sophisticated methods like adaptation based on identification and observation, or absolute stability methods, the most obvious way to withstand the uncertainty is to keep some constraints by "brutal force". Indeed any strictly kept equality removes one " uncertainty dimension". The most simple way to keep a constraint is to react immediately to any deviation of the system stirring it back to the constraint by a sufficiently energetic effort. Implemented directly, the approach leads to so-called sliding modes, which become main operation modes in the variable structure systems (VSS) [55]. Having proved their high accuracy and robustness with respect to various internal and external disturbances, they also reveal their main drawback: the so-called chattering effect, i.e., dangerous high-frequency vibrations of the controlled system. Such an effect was considered as an obvious intrinsic feature of the very idea of immediate powerful reaction to the minutest deviation from the chosen constraint. Another important feature is proportionality of the maximal deviation from the constraint to the time interval between the measurements (or to the switching delay).

643 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show how molecular clouds in the solar neighborhood might be formed and produce stars rapidly enough to explain stellar population ages, building on results from numerical simulations of the turbulent interstellar medium and general considerations of molecular gas formation.
Abstract: We show how molecular clouds in the solar neighborhood might be formed and produce stars rapidly enough to explain stellar population ages, building on results from numerical simulations of the turbulent interstellar medium and general considerations of molecular gas formation. Observations of both star-forming regions and young, gas-free stellar associations indicate that most nearby molecular clouds form stars only over a short time span before dispersal; large-scale —ows in the diUuse interstellar medium have the potential for forming clouds sufficiently rapidly and for producing stellar populations with ages much less than the lateral crossing times of their host molecular clouds. We identify four important factors for understanding rapid star formation and short cloud lifetimes. First, much of the accumulation and dispersal of clouds near the solar circle might occur in the atomic phase; only the

639 citations

Journal ArticleDOI
TL;DR: Findings suggest that auto-Abs against IL- 17A, IL-17F, and IL-22 may cause CMC in patients with APS-I.
Abstract: Most patients with autoimmune polyendocrine syndrome type I (APS-I) display chronic mucocutaneous candidiasis (CMC). We hypothesized that this CMC might result from autoimmunity to interleukin (IL)-17 cytokines. We found high titers of autoantibodies (auto-Abs) against IL-17A, IL-17F, and/or IL-22 in the sera of all 33 patients tested, as detected by multiplex particle-based flow cytometry. The auto-Abs against IL-17A, IL-17F, and IL-22 were specific in the five patients tested, as shown by Western blotting. The auto-Abs against IL-17A were neutralizing in the only patient tested, as shown by bioassays of IL-17A activity. None of the 37 healthy controls and none of the 103 patients with other autoimmune disorders tested had such auto-Abs. None of the patients with APS-I had auto-Abs against cytokines previously shown to cause other well-defined clinical syndromes in other patients (IL-6, interferon [IFN]-γ, or granulocyte/macrophage colony-stimulating factor) or against other cytokines (IL-1β, IL-10, IL-12, IL-18, IL-21, IL-23, IL-26, IFN-β, tumor necrosis factor [α], or transforming growth factor β). These findings suggest that auto-Abs against IL-17A, IL-17F, and IL-22 may cause CMC in patients with APS-I.

639 citations

Journal ArticleDOI
TL;DR: A new Rhizobium species that nodulates Phaseolus vulgaris L. and Leucaena spp.
Abstract: A new Rhizobium species that nodulates Phaseolus vulgaris L. and Leucaena spp. is proposed on the basis of the results of multilocus enzyme electrophoresis, DNA-DNA hybridization, an analysis of ribosomal DNA organization, a sequence analysis of 16S rDNA, and an analysis of phenotypic characteristics. This taxon, Rhizobium tropici sp. nov., was previously named Rhizobium leguminosarum biovar phaseoli (type II strains) and was recognized by its host range (which includes Leucaena spp.) and nif gene organization. In contrast to R. leguminosarum biovar phaseoli, R. tropici strains tolerate high temperatures and high levels of acidity in culture and are symbiotically more stable. We identified two subgroups within R. tropici and describe them in this paper.

636 citations


Authors

Showing all 73617 results

NameH-indexPapersCitations
Richard Peto183683231434
Anton M. Koekemoer1681127106796
Rory Collins162489193407
Timothy C. Beers156934102581
Vivek Sharma1503030136228
Kjell Fuxe142147989846
Prashant V. Kamat14072579259
Carmen García139150396925
Harold A. Mooney135450100404
Efe Yazgan12898679041
Roberto Maiolino12781661724
Peter Nugent12775492988
William R. Miller12560172570
Nicholas A. Kotov12357455210
John C. Wingfield12250952291
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Autonomous University of Madrid
52.8K papers, 1.6M citations

89% related

University of Granada
59.2K papers, 1.4M citations

89% related

University of Buenos Aires
50.9K papers, 1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023311
2022967
20217,481
20207,906
20197,107