scispace - formally typeset
Search or ask a question

Showing papers by "National Chemical Laboratory published in 2021"


Journal ArticleDOI
17 Jun 2021
TL;DR: In this paper, the authors provide an overview of the best practices for C-H activation as well as key advances in asymmetric, photoinduced and electrocatalytic-mediated catalysis for this synthetic platform.
Abstract: Transition metal-catalysed C–H activation has emerged as an increasingly powerful platform for molecular syntheses, enabling applications to natural product syntheses, late-stage modification, pharmaceutical industries and material sciences, among others. This Primer summarizes representative best practices for the experimental set-up and data deposition for C–H activation, as well as discussing key developments including recent advances in asymmetric, photoinduced and electrocatalytic C–H activation. Likewise, strategies for applications of C–H activation towards the assembly of structurally complex (bio)polymers and drugs in academia and industry are discussed. In addition, current limitations in C–H activation and possible approaches for overcoming these shortcomings are reviewed. This Primer provides an overview of the best practices for C–H activation as well as key advances in asymmetric, photoinduced and electrocatalytic-mediated catalysis for this synthetic platform. An overview of how C–H activation facilitates the synthesis of molecules such as structurally complex (bio)polymers and drugs is provided along with the current challenges and priorities for the next decade.

179 citations


Journal ArticleDOI
TL;DR: In this article, the authors focus on the in situ polymerization processes that employ various polymerization methods (e.g., free-radical polymerization, ionic polymerisation, electropolymerization, condensation polymerization etc.), functional monomers and oligomers, and PE integration strategies for the fabrication of lithium (ion and metal) polymer batteries (LIPBs and LMPBs).
Abstract: Polymer electrolytes (PEs), a type of solid-state electrolytes (SSEs), have been in contention for nearly half a century to replace organic liquid electrolytes (LEs) that are used in state-of-the-art lithium-ion batteries (LIBs). They are envisaged to accelerate the industrial-scale production of safe, energy-dense, flexible, and thin lithium polymer batteries (LPBs). LPBs are expected to be widely employed for electric propulsion and other futuristic applications, such as flexible electronics and the Internet of Things (IoT). Even though several polymer architectures and chemistries have been attempted so far, PEs that can outperform LEs remain a real challenge. Apart from inadequate Li+-ion transport properties, challenges concerning the integration of PEs and the engineering of compatible, robust, and durable interfaces and interphases at both the electrodes of LPBs must be appropriately addressed. Recently, the in situ polymerization process has been widely employed as a robust fabrication tool for surpassing the intricacies related to the integration of PEs in LPBs. Hence, in this review, we focus on the in situ polymerization processes that employ various polymerization methods (e.g., free-radical polymerization, ionic polymerization, electropolymerization, condensation polymerization, etc.), functional monomers and oligomers (e.g., acrylate, methacrylate, allyl and vinyl ethers, epoxides, etc.), and PE integration strategies for the fabrication of lithium (ion and metal) polymer batteries (LIPBs and LMPBs). Additionally, this review also evaluates the approaches that have been developed until now to implement the in situ processing of LPBs from large-sized pouch cells to flexible-/printable-batteries and even microbatteries.

93 citations


Journal ArticleDOI
TL;DR: In this article, a novel activated carbon derived through a cavitation process from the mixture of native European deciduous trees, Birch, Fagaceae, and Carpinus betulus (commonly known as European hornbeam), was employed as the electrode material in supercapacitors.
Abstract: Activated carbons are one of the possible electrode materials for supercapacitors (SCs), which are widely used in commercial applications. Herein, we reported the synthesis of a novel activated carbon derived through a cavitation process from the mixture of native European deciduous trees, Birch, Fagaceae, and Carpinus betulus (commonly known as European hornbeam), which was employed as the electrode material in SC. From the morphological and structural characterization, we observed that the prepared sample is a desirable carbon with good porosity and high specific surface area of about 614 m2 g−1. The electrochemical properties of the synthesized material were evaluated with a three-electrode configuration in 1.0 M H2SO4 electrolyte. It was found that in device mode, the carbon material delivers a specific capacitance of 24 F g−1 at 0.25 A g−1 with excellent cycling stability of over 10000 consecutive charge/discharge cycles. Thus, our studies demonstrate the facile synthesis of biomass-derived carbon and its application as a versatile electrode material for SC applications.

90 citations


Journal ArticleDOI
TL;DR: In this paper, a review of different approaches employed for photocatalytic water splitting reported in the literature is presented, and the merits and demerits of thin film and particulate methods are addressed in detail.
Abstract: Although nearly five decades of efforts have gone into solar water splitting (SWS), still success eludes and there is no big breakthrough till date. While huge importance is given either individually or concurrently to the three fundamental steps, namely, light absorption, charge carrier separation and diffusion and charge utilization at redox sites, many aspects that are practically helpful to improve the efficiency are not widely discussed and practised. Nonetheless, by adopting a number of small, but significant changes, solar hydrogen production can be enhanced. The present review discusses such different approaches employed for photocatalytic water splitting reported in the literature. For example, an increase of up to two orders of magnitude in solar hydrogen generation was observed with a film form compared to the particulate form of the same catalyst. Discussion on various approaches of enhanced hydrogen production under sunlight and one sun conditions is the main focus of this review, in particular with thin-film forms. The merits and demerits of thin film and particulate methods, respectively, are addressed in detail. Potential methods and successful stories on scalability are also discussed in the present review. In contrast to charge collection over a long distance in solar cell-based methods, a film-based method discussed shows that the local charge utilisation at a zero applied potential is an attractive feature for SWS. A comparison is provided between the PEC-WS and SWS for solar hydrogen generation, and how far we are from the reality to produce solar hydrogen on an industrial scale. We believe the presently practised diverse evaluation efforts may be truncated to fewer methods such as film-based evaluation and in a focussed manner to tackle the SWS issue towards sustainable production of solar hydrogen.

87 citations


Journal ArticleDOI
TL;DR: This Perspective discusses the phosphorescence features of single- and multi-component crystalline assemblies, host–guest assemblies, polymers, and polymer-based systems under various classes of molecules and discusses the various applications of the organic phosphors.
Abstract: An innovative transformation of organic luminescent materials in recent years has realised the exciting research area of ultralong room-temperature phosphorescence. Here the credit for the advancements goes to the rational design of new organic phosphors. The continuous effort in the area has yielded wide varieties of metal-free organic systems capable of extending the lifetime to several seconds under ambient conditions with high quantum yield and attractive afterglow properties. The various strategies adopted in the past decade to manipulate the fate of triplet excitons suggest a bright future for this class of materials. To analyze the underlying processes in detail, we have chosen high performing organic triplet emitters that utilized the best possible ways to achieve a lifetime above one second along with impressive quantum yield and afterglow properties. Such a case study describing different classes of metal-free organic phosphors and strategies adopted for the efficient management of triplet excitons will stimulate the development of better candidates for futuristic applications. This Perspective discusses the phosphorescence features of single- and multi-component crystalline assemblies, host–guest assemblies, polymers, and polymer-based systems under various classes of molecules. The various applications of the organic phosphors, along with future perspectives, are also highlighted.

81 citations


Journal ArticleDOI
TL;DR: In this paper, the N-heterocyclic carbene-catalyzed atroposelective synthesis of N-aryl succinimides having an axially chiral C-N bond via the desymmetrization of n-aryl maleimides is described.
Abstract: Although the construction of axially chiral C-C bonds leading to the atroposelective synthesis of biaryls and allied compounds are well-known, the related synthesis of compounds bearing axially chiral C-N bonds are relatively rare. Described herein is the N-heterocyclic carbene-catalyzed atroposelective synthesis of N-aryl succinimides having an axially chiral C-N bond via the desymmetrization of N-aryl maleimides. The NHC involved intermolecular Stetter-aldol cascade of dialdehydes with prochiral N-aryl maleimides followed by oxidation afforded N-aryl succinimides in good yields and ee values. Preliminary studies on rotation barrier for the C-N bond, the temperature dependence, and detailed DFT studies on mechanism are also provided.

56 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of interfacial layer on the nanoscale mechanisms and thermophysical properties of nanofluids is reviewed and various tunable parameters on the heat transfer properties of the interlayer are also reviewed.

56 citations


Journal ArticleDOI
TL;DR: In this paper, a solution-dispersible porous covalent organic framework (COF) nanospheres were designed and synthesized to functionalize unactivated C-H bonds of alkanes heterogeneously with high catalytic yield and enhanced regio- and stereoselectivity.
Abstract: Heterogeneous catalysis in water has not been explored beyond certain advantages such as recyclability and recovery of the catalysts from the reaction medium. Moreover, poor yield, extremely low selectivity, and active catalytic site deactivation further underrate the heterogeneous catalysis in water. Considering these facts, we have designed and synthesized solution-dispersible porous covalent organic framework (COF) nanospheres. We have used their distinctive morphology and dispersibility to functionalize unactivated C-H bonds of alkanes heterogeneously with high catalytic yield (42-99%) and enhanced regio- and stereoselectivity (3°:2° = 105:1 for adamantane). Further, the fabrication of catalyst-immobilized COF nanofilms via covalent self-assembly of catalytic COF nanospheres for the first time has become the key toward converting the catalytically inactive homogeneous catalysts into active and effective heterogeneous catalysts operating in water. This unique covalent self-assembly occurs through the protrusion of the fibers at the interface of two nanospheres, transmuting the catalytic spheres into films without any leaching of catalyst molecules. The catalyst-immobilized porous COF nanofilms' chemical functionality and hydrophobic environment stabilize the high-valent transient active oxoiron(V) intermediate in water and restricts the active catalytic site's deactivation. These COF nanofilms functionalize the unactivated C-H bonds in water with a high catalytic yield (45-99%) and with a high degree of selectivity (cis:trans = 155:1; 3°:2° = 257:1, for cis-1,2-dimethylcyclohexane). To establish this approach's "practical implementation", we conducted the catalysis inflow (TON = 424 ± 5) using catalyst-immobilized COF nanofilms fabricated on a macroporous polymeric support.

55 citations


Journal ArticleDOI
TL;DR: In this article, the structural, electronic, and optical properties of double perovskites A2BX6 and Cs2PtI6 were calculated using the density functional theory.
Abstract: The highly successful PBE functional and the modified Becke–Johnson exchange potential were used to calculate the structural, electronic, and optical properties of the vacancy-ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; X = Cl, Br, and I) using the density functional theory, a first principles approach. The convex hull approach was used to check the thermodynamic stability of the compounds. The calculated parameters (lattice constants, band gap, and bond lengths) are in tune with the available experimental and theoretical results. The compounds, Rb2PdBr6 and Cs2PtI6, exhibit band gaps within the optimal range of 0.9–1.6 eV, required for the single-junction photovoltaic applications. The photovoltaic efficiency of the studied materials was assessed using the spectroscopic-limited-maximum-efficiency (SLME) metric as well as the optical properties. The ideal band gap, high dielectric constants, and optimum light absorption of these perovskites make them suitable for high performance single and multi-junction perovskite solar cells.

54 citations


Journal ArticleDOI
TL;DR: Aptamers are single strand DNA (ssDNA/RNA), are specifically binds to the target molecules can be generated by systematic evolution of ligands through exponential enrichment (SELEX) as mentioned in this paper.
Abstract: Aspergillus species are the paramount ubiquitous fungi that contaminate various food substrates and produce biochemicals known as mycotoxins. Aflatoxins (AFTs), ochratoxin A (OTA), patulin (PAT), citrinin (CIT), aflatrem (AT), secalonic acids (SA), cyclopiazonic acid (CPA), terrein (TR), sterigmatocystin (ST) and gliotoxin (GT), and other toxins produced by species of Aspergillus plays a major role in food and human health. Mycotoxins exhibited wide range of toxicity to the humans and animal models even at nanomolar (nM) concentration. Consumption of detrimental mycotoxins adulterated foodstuffs affects human and animal health even trace amounts. Bioaerosols consisting of spores and hyphal fragments are active elicitors of bronchial irritation and allergy, and challenging to the public health. Aspergillus is the furthermost predominant environmental contaminant unswervingly defile lives with a 40-90 % mortality risk in patients with conceded immunity. Genomics, proteomics, transcriptomics, and metabolomics approaches useful for mycotoxins' detection which are expensive. Antibody based detection of toxins chemotypes may result in cross-reactivity and uncertainty. Aptamers (APT) are single stranded DNA (ssDNA/RNA), are specifically binds to the target molecules can be generated by systematic evolution of ligands through exponential enrichment (SELEX). APT are fast, sensitive, simple, in-expensive, and field-deployable rapid point of care (POC) detection of toxins, and a better alternative to antibodies.

51 citations


Journal ArticleDOI
09 Jun 2021-eLife
TL;DR: Kumar et al. as discussed by the authors used a lateral flow test to detect mutations in the SARS-CoV-2 virus at a fraction of the price of NGS approaches if used only for diagnosis.
Abstract: SARS-CoV-2, the virus responsible for COVID-19, has a genome made of RNA (a nucleic acid similar to DNA) that can mutate, potentially making the disease more transmissible, and more lethal. Most countries have monitored the rise of mutated strains using a technique called next generation sequencing (NGS), which is time-consuming, expensive and requires skilled personnel. Sometimes the mutations to the virus are so small that they can only be detected using NGS. Finding cheaper, simpler and faster SARS-CoV-2 tests that can reliably detect mutated forms of the virus is crucial for public health authorities to monitor and manage the spread of the virus. Lateral flow tests (the same technology used in many pregnancy tests) are typically cheap, fast and simple to use. Typically, lateral flow assay strips have a band of immobilised antibodies that bind to a specific protein (or antigen). If a sample contains antigen molecules, these will bind to the immobilised antibodies, causing a chemical reaction that changes the colour of the strip and giving a positive result. However, lateral flow tests that use antibodies cannot easily detect nucleic acids, such as DNA or RNA, let alone mutations in them. To overcome this limitation, lateral flow assays can be used to detect a protein called Cas9, which, in turn, is able to bind to nucleic acids with specific sequences. Small changes in the target sequence change how well Cas9 binds to it, meaning that, in theory, this approach could be used to detect small mutations in the SARS-CoV-2 virus. Kumar et al. made a lateral flow test that could detect a Cas9 protein that binds to a nucleic acid sequence found in a specific mutant strain of SARS-CoV-2. This Cas9 was highly sensitive to changes in its target sequence, so a small mutation in the target nucleic acid led to the protein binding less strongly, and the signal from the lateral flow test being lost. This meant that the lateral flow test designed by Kumar et al. could detect mutations in the SARS-CoV-2 virus at a fraction of the price of NGS approaches if used only for diagnosis. The lateral flow test was capable of detecting mutant viruses in patient samples too, generating a colour signal within an hour of a positive sample being run through the assay. The test developed by Kumar et al. could offer public health authorities a quick and cheap method to monitor the spread of mutant SARS-CoV-2 strains; as well as a way to determine vaccine efficacy against new strains.

Journal ArticleDOI
TL;DR: In this article, a review of the plant alkaloids is presented, which highlights the diversity in the basic structures of plant alkaloids arising through enzymatically catalyzed structural modifications in certain plant species, as well as their emerging diverse biological activities.
Abstract: Phytochemicals belonging to the group of alkaloids are signature specialized metabolites endowed with countless biological activities. Plants are armored with these naturally produced nitrogenous compounds to combat numerous challenging environmental stress conditions. Traditional and modern healthcare systems have harnessed the potential of these organic compounds for the treatment of many ailments. Various chemical entities (functional groups) attached to the central moiety are responsible for their diverse range of biological properties. The development of the characterization of these plant metabolites and the enzymes involved in their biosynthesis is of an utmost priority to deliver enhanced advantages in terms of biological properties and productivity. Further, the incorporation of whole/partial metabolic pathways in the heterologous system and/or the overexpression of biosynthetic steps in homologous systems have both become alternative and lucrative methods over chemical synthesis in recent times. Moreover, in-depth research on alkaloid biosynthetic pathways has revealed numerous chemical modifications that occur during alkaloidal conversions. These chemical reactions involve glycosylation, acylation, reduction, oxidation, and methylation steps, and they are usually responsible for conferring the biological activities possessed by alkaloids. In this review, we aim to discuss the alkaloidal group of plant specialized metabolites and their brief classification covering major categories. We also emphasize the diversity in the basic structures of plant alkaloids arising through enzymatically catalyzed structural modifications in certain plant species, as well as their emerging diverse biological activities. The role of alkaloids in plant defense and their mechanisms of action are also briefly discussed. Moreover, the commercial utilization of plant alkaloids in the marketplace displaying various applications has been enumerated.

Journal ArticleDOI
TL;DR: In this paper, the catalytic conversion of bio-derived oils into biodiesel using various sulfonic acid-functionalized heterogeneous catalytic materials that show higher catalytic efficiency and superior recyclability is described.
Abstract: The development of social productive forces leads to the increasing consumption of fossil fuels. However, the burning of traditional fossil fuels releases huge amounts of carbon emissions into the atmosphere, resulting in drastically increased global surface temperatures, and hence, global warming and abnormal climate change. Biodiesel, which can be produced by (trans)esterification of bio-oils using solid acid catalysts, is recognized as renewable and clean energy, alternative to fossil-derived diesel, and it can meet society's requirements. This review describes the catalytic conversion of bio-derived oils into biodiesel using various sulfonic acid-functionalized heterogeneous catalytic materials that show higher catalytic efficiency and superior recyclability. Besides, various methods of biodiesel preparation and the appropriate design and preparation of robust and efficient catalytic materials for biodiesel production were provided. Finally, the mechanisms of different catalytic esterification and transesterification reactions for biodiesel synthesis, the relevant reaction kinetic models, and techno-economic analysis of biodiesel production were critically discussed in this review.

Journal ArticleDOI
TL;DR: In this paper, an operando generated stable Ni-In kinetic phase that selectively converts CO2 to methanol (CTM) at low pressure compared to the state-of-the-art materials was discovered.
Abstract: The discovery of new materials for efficient transformation of carbon dioxide (CO2) into desired fuel can revolutionize large-scale renewable energy storage and mitigate environmental damage due to carbon emissions. In this work, we discovered an operando generated stable Ni–In kinetic phase that selectively converts CO2 to methanol (CTM) at low pressure compared to the state-of-the-art materials. The catalytic nature of a well-known methanation catalyst, nickel, has been tuned with the introduction of inactive indium, which enhances the CTM process. The remarkable change in the mechanistic pathways toward methanol production has been mapped by operando diffuse reflectance infrared Fourier transform spectroscopy analysis, corroborated by first-principles calculations. The ordered arrangement and pronounced electronegativity difference between metals are attributed to the complete shift in mechanism. The approach and findings of this work provide a unique advance toward the next-generation catalyst discovery for going beyond the state-of-the-art in CO2 reduction technologies.

Journal ArticleDOI
TL;DR: Copper oxide (CuO) is used as a reusable solid reagent for hydrogenation of nitro-arenes to aminoarenes as discussed by the authors, which can be regenerated to active CuO by thermal oxidation.
Abstract: Copper oxide (CuO) is used as a reusable solid reagent for hydrogenation of nitroarenes to aminoarenes. The use of CuO resulted in 100 % conversion of 2.9 mmol of nitrobenzene to aniline in 45 s at room temperature using hydrazine hydrate as the reducing agent. During the reaction, CuO is converted to inactive metallic Cu which can be regenerated to active CuO by thermal oxidation. DFT simulations indicated facile formation of oxygen vacancies (EO,vac = −3.8 kJ/mol) on the surface of CuO (111) in reducing environment which is consistent with the XPS analysis. Oxygen vacancies facilitate stronger nitrobenzene binding (−148.5 kJ/mol) and reduced activation barrier (Ea = 36.4 kJ/mol) for N O dissociation. Motivated from this mechanistic insight -NO2 groups in various nitroarenes were selectively hydrogenated to NH2 groups using CuO.

Journal ArticleDOI
01 Jan 2021-Carbon
TL;DR: In this article, a planar micro-supercapacitor with interdigitated Boron carbon Nitride (BCN) electrodes is fabricated via fast, scalable laser patterning technique.

Journal ArticleDOI
TL;DR: In this article, the authors provide a detailed description of various approaches used for engineering of methyl-D-erythritol-4-phosphate (MEP) and mevalonate pathway for synthesizing isoprene units (C5) and ultimate production of diverse isoprenoids.
Abstract: Isoprenoids, often called terpenoids, are the most abundant and highly diverse family of natural organic compounds. In plants, they play a distinct role in the form of photosynthetic pigments, hormones, electron carrier, structural components of membrane, and defence. Many isoprenoids have useful applications in the pharmaceutical, nutraceutical, and chemical industries. They are synthesized by various isoprenoid synthase enzymes by several consecutive steps. Recent advancement in metabolic engineering and synthetic biology has enabled the production of these isoprenoids in the heterologous host systems like Escherichia coli and Saccharomyces cerevisiae. Both heterologous systems have been engineered for large-scale production of value-added isoprenoids. This review article will provide the detailed description of various approaches used for engineering of methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathway for synthesizing isoprene units (C5) and ultimate production of diverse isoprenoids. The review particularly highlighted the efforts taken for the production of C5-C20 isoprenoids by metabolic engineering techniques in E. coli and S. cerevisiae over a decade. The challenges and strategies are also discussed in detail for scale-up and engineering of isoprenoids in the heterologous host systems.Key points• Isoprenoids are beneficial and valuable natural products.• E. coli and S. cerevisiae are the promising host for isoprenoid biosynthesis.• Emerging techniques in synthetic biology enabled the improved production.• Need to expand the catalogue and scale-up of un-engineered isoprenoids. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.

Journal ArticleDOI
TL;DR: In this article, the direct C-H bond alkylation using unactivated H-H bonds was studied. And the authors proposed a method to develop privileged alkylated arenes and heteroarenes.
Abstract: Alkylation represents an important organic transformation in molecular science to develop privileged alkylated arenes and heteroarenes. Especially, the direct C–H bond alkylation using unactivated ...

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the first example of such transformation with the oxidative coupling of various benzylamine derivatives to imines under ambient conditions using SnS2nanosheets (NSs), showing that the reaction rate improves manifold and shows ∼98 %conversion (>99 % selectivity) in 2 h under direct sunlight and open-air when the NSs were decorated with 1.5 wt% Au NPs on (Au/SnS2), making it one of the best catalysts for this reaction.
Abstract: Solar driven aerial oxidation processes have gained importance in organic transformations leading to the development of many nanocrystalline photocatalysts. Although such nanomaterials have many potential advantages, they often underperform due to poor visible light absorption and rapid recombination of excitons. Incorporation of plasmonic nanoparticles (NPs) on the catalyst surfaces can extend their response to visible light and improve photocatalytic efficiency by the ‘hot-electron’ injection mechanism. Nanostructures of SnS2 too absorb a part of the visible light to induce many photocatalytic reactions, though their ability to perform the selective and controlled organic transformations has not yet been observed. Herein, we demonstrate the first example of such transformation with the oxidative coupling of various benzylamine (BA) derivatives to imines under ambient conditions using SnS2nanosheets (NSs). The reaction rate improves manifold and shows ∼98 %conversion (>99 % selectivity) in 2 h under direct sunlight and open-air when the NSs were decorated with 1.5 wt% Au NPs on (Au/SnS2), making it one of the best catalysts for this reaction. We found that the large enhancement in activity upon Au loading is accompanied by a noticeable change in photo-induced charge accumulation behaviour in Au/SnS2 from the usual “spike and overshoot” one and contributed by facile transfer of excited electrons across the Au-SnS2 heterojunction in which Au NPs act as both sources and sinks for the photo-excited electrons. Finally, a detailed mechanism of the oxidation reaction has been proposed.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated removal of three common solvents by hydrodynamic cavitation (nominal capacity, 1m3/h) and found that the vortex diode required lower pressure drop and was superior to orifice and process intensification.
Abstract: Industrial wastewater treatment for removal of small concentrations of harmful solvents is pertinent issue in many chemical and pharmaceutical industries. The present work evaluates removal of three common solvents by hydrodynamic cavitation (nominal capacity, 1m3/h). Solvent degradation of three solvents viz. octanol, dimethyl formamide and cyclohexanol was studied in the concentration range of 50-200 mg/L and for the pressure drop range of 0.5-5 bar. The vortex based cavitation device (vortex diode) was compared with that of linear flow based device (orifice). Process intensification in the form of aeration and addition oxidizing agent- hydrogen peroxide was also evaluated for synergistic effect. The vortex diode required lower pressure drop and is superior to orifice and process intensification using aeration is most effective. A reduction in TOC to the extent of 74% could be achieved for octanol (200 ppm) using aeration with cavitational yield of 1202×10−4 mg/J for vortex diode, yield ~10 times of orifice. The degradation depends on the nature of solvent and it was revealed that low values of dielectric constant (e

Journal ArticleDOI
01 Jan 2021
TL;DR: Transmission electron microscopy studies revealed that limonoid restricted the aggregation of tau to fibrils; in turn, limonoids led to the formation of short and fragile aggregates, substantiatingLimonoids as a potential lead in overcoming Alzheimer’s disease.
Abstract: Tau is a phosphoprotein with natively unfolded conformation that functions to stabilize microtubules in axons. Alzheimer's disease pathology triggers several modifications in tau, which causes it to lose its affinity towards microtubule, thus, leading to microtubule disassembly and loss of axonal integrity. This elicit accumulation of tau as paired helical filaments is followed by stable neurofibrillary tangles formation. A large number of small molecules have been isolated from Azadirachta indica with varied medicinal applications. The intermediate and final limonoids, nimbin and salannin respectively, isolated from Azadirachta indica, were screened against tau aggregation. ThS and ANS fluorescence assay showed the role of intermediate and final limonoids in preventing heparin induced cross-β sheet formation and also decreased hydrophobicity, which are characteristic nature of tau aggregation. Transmission electron microscopy studies revealed that limonoids restricted the aggregation of tau to fibrils; in turn, limonoids led to the formation of short and fragile aggregates. Both the limonoids were non-toxic to HEK293T cells thus, substantiating limonoids as a potential lead in overcoming Alzheimer's disease.

Journal ArticleDOI
TL;DR: In this paper, a binary solid form screen of Nicorandil with homologous dicarboxylic acids was developed for the development of novel solid forms with enhanced physicochemical and mechanical properties.
Abstract: Cocrystallization is a rational selection crystal engineering approach for the development of novel solid forms with enhanced physicochemical and mechanical properties. Nicorandil (NCR) is a niacinamide vitamin derivative used to treat angina pectoris. A binary solid form screen of NCR with homologous dicarboxylic acids afforded NCR–oxalic acid (NCR–OA, 1 : 1), NCR–fumaric acid (NCR–FA, 1 : 1), NCR–succinic acid (NCR–SA, 1 : 1), and NCR–suberic acid (NCR–SBA, 1 : 0.5). The binary solids were characterized by powder X-ray diffraction, IR and NMR spectroscopy, and DSC. NCR–FA and NCR–SBA were crystallized by slow evaporation from chloroform and toluene solvents, respectively. Single crystal X-ray diffraction confirmed that NCR–FA is a molecular salt, while NCR–SBA is a neutral cocrystal. NCR and the FA anion are connected via the robust carboxylate⋯pyridinium synthon, whereas in the NCR–SBA cocrystal, the components associate via the carboxylic acid⋯pyridine synthon. The phase stability, solubility, dissolution rate, diffusion rate and tabletability studies have demonstrated that the binary solids exhibit improved physical and mechanical properties compared to the NCR drug. Specifically, the NCR–FA salt and NCR–SBA cocrystal have higher solubility, dissolution rate, and hardness at lower pressures, making the formulation suitable for tablet compression.

Journal ArticleDOI
01 Jan 2021
TL;DR: Existing information on the gut mediated-pulmonary immunity conferred by probiotic bacteria, in the course of respiratory virus infections and administration as a prophylactic measure in COVID-19 pandemic in managing intestinal dysbiosis are comprehended.
Abstract: The new viral pandemic of COVID-19 is caused by a novel coronavirus (SARS-CoV-2) that has brought the world at another unprecedented crisis in terms of health and economy. The lack of specific therapeutics necessitates other strategies to prevent the spread of infection caused by this previously unknown viral etiological agent. Recent pieces of evidence have shown an association between COVID-19 disease and intestinal dysbiosis. Probiotics comprise living microbes that upon oral administration benefit human health by reshaping the composition of gut microbiota. The close kinship of the gastrointestinal and respiratory tract suggests why the dysfunction of one may incite illness in others. The emerging studies suggest the capability of probiotics to regulate immune responses in the respiratory system. The efficacy of probiotics has been studied previously on several respiratory tract viral infections. Therefore, the purpose of this review is to comprehend existing information on the gut mediated-pulmonary immunity conferred by probiotic bacteria, in the course of respiratory virus infections and administration as a prophylactic measure in COVID-19 pandemic in managing intestinal dysbiosis as well.

Journal ArticleDOI
TL;DR: In this article, the structural tunability of the metal halide unit in Sb(III)Cl 0D hybrids with contrasting photo-physical properties (broadband, Stokes shift, strong/weak colored emission).
Abstract: Antimony(III) halide based zero dimensional hybrids have gained attention as broadband emitters. Until now, quadrangular pyramidal SbX5 based and octahedral SbX6 based 0D hybrids have been reported utilizing different organic ligands demonstrating some structural tunability affecting their emissive properties. Utilizing a common organic ligand, here we demonstrate the structural tunability (quadrangular pyramidal, octahedral, or a combination thereof) of the metal halide unit in Sb(III)Cl 0D hybrids with contrasting photo-physical properties (broadband, Stokes shift, strong/weak colored emission). The structure–property–mechanism correlation of the synthesized compounds [1 (C12H52Cl18N8O4Sb3; tris Sb green); 2 (C12H50Cl14N8O3Sb2; tris Sb red); 3 (C24H88Cl25N16O4Sb3; tris Sb yellow)] identifies crucial factors that control their emissive properties. The X-ray analysis reveals the structure (1-octahedral; 2-quadrangular pyramidal; 3-combination thereof) and the order of the extent of structural distortion as 1–3 ≪ 2. The metal halide coordination environment asymmetry and its structure are observed to dictate PL emission energy (1-green; 2-red; 3-yellow) as supported by a qualitative Molecular Orbital scheme. The extent of structural distortion guides the observed Stokes shifts (1–165 nm; 2–290 nm; 3–200 nm; 1–3 < 2). Interestingly, the extent of distortion is found to be well correlated with the observed PLQY (1–45%; 2–6%; 3–43%; 1–3 ≫ 2). This report clearly demonstrates the structural tunability and the effect of the metal halide unit structure/distortion in shaping the emissive properties of 0D organic Sb(III) halide hybrids.

Journal ArticleDOI
TL;DR: X-ray photoelectron spectroscopy (XPS) is used to understand the nature of acid base crystalline solids, to know whether the product is a salt (proton transfer, O−···H−N+) or a cocrystal (neutral a... as mentioned in this paper.
Abstract: X-ray photoelectron spectroscopy (XPS) is used to understand the nature of acid–base crystalline solids, to know whether the product is a salt (proton transfer, O–···H–N+) or a cocrystal (neutral a...

Journal ArticleDOI
TL;DR: In this article, the authors reported significant improvements in the removal of ammoniacal nitrogen from wastewater which is an important problem for many industries such as dyes and pigment, distilleries and fisheries.

Journal ArticleDOI
TL;DR: In this article, a facile non-template-assisted mechanical ball milling technique was employed to generate a PdBi alloy catalyst, which induced lattice strain upon the milling time caused a shift of the d-band center.
Abstract: A facile non-template-assisted mechanical ball milling technique was employed to generate a PdBi alloy catalyst. The induced lattice strain upon the milling time caused a shift of the d-band center...


Journal ArticleDOI
TL;DR: In this paper, high-power flexible supercapacitor electrodes were fabricated by decorating Ni-electroplated carbon nanofibers (Ni@CNF) with two-dimensional NiGa2S4 nanosheets.

Journal ArticleDOI
TL;DR: In this paper, the antimicrobial and antibiofilm properties of silver-platinum nanohybrids (AgPtNHs), silver nanoparticles (AgNPs), and platinum nanoparticles(PtNPs) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were reported.
Abstract: Various bacterial pathogens are responsible for nosocomial infections resulting in critical pathophysiological conditions, mortality, and morbidity. Most of the bacterial infections are associated with biofilm formation, which is resistant to the available antimicrobial drugs. As a result, novel bactericidal agents need to be fabricated, which can effectively combat the biofilm-associated bacterial infections. Herein, for the first time we report the antimicrobial and antibiofilm properties of silver-platinum nanohybrids (AgPtNHs), silver nanoparticles (AgNPs), and platinum nanoparticles (PtNPs) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The AgPtNHs were synthesized by a green route using Dioscorea bulbifera tuber extract at 100°C for 5 h. The AgPtNHs ranged in size from 20 to 80 nm, with an average of ∼59 nm. AgNPs, PtNPs, and AgPtNHs showed a zeta potential of -14.46, -1.09, and -11.39 mV, respectively. High antimicrobial activity was observed against P. aeruginosa and S. aureus and AgPtNHs exhibited potent antimicrobial synergy in combination with antibiotics such as streptomycin, rifampicin, chloramphenicol, novobiocin, and ampicillin up to variable degrees. Interestingly, AgPtNHs could inhibit bacterial biofilm formation significantly. Hence, co-administration of AgPtNHs and antibiotics may serve as a powerful strategy to treat bacterial infections.