scispace - formally typeset
Search or ask a question
Institution

National Chemical Laboratory

FacilityPune, Maharashtra, India
About: National Chemical Laboratory is a facility organization based out in Pune, Maharashtra, India. It is known for research contribution in the topics: Catalysis & Enantioselective synthesis. The organization has 8891 authors who have published 14837 publications receiving 387600 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the electronic structure, chemical states and local geometry of the active species in the CuO/ZnO/Al2O3/ZrO2 multicomponent mixed oxide catalysts employed in the oxidative steam reforming of methanol (OSRM) reaction for H2 production were investigated.
Abstract: Systematic X-ray photoelectron spectroscopy (XPS), X-ray induced Auger electron spectroscopy (AES), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) studies were undertaken to investigate the electronic structure, chemical states and local geometry of the active species in the CuO/ZnO/Al2O3/ZrO2 multicomponent mixed oxide catalysts employed in the oxidative steam reforming of methanol (OSRM) reaction for H2 production. The core level XPS and AES indicated the existence of CuO and ZnO-like species. Two kinds of zirconium species, one similar to that of ZrO2 and another with relatively higher electron density were noticed from the Zr 3d core level XPS of Zr- containing catalysts. The valence band (VB) XPS studies revealed that for Zr-containing catalysts, the Cu 3d anti-bonding orbital splits from the main VB and shifts toward lower binding energy (BE). The surface Cu/(Al + Zr) ratios were found to be close to those in the bulk while segregation of Zn at the surface was evidenced in all samples. The XANES and EXAFS results also indicated the existence of CuO and ZnO-like species, whose local environments are modified with respect to the chemical composition. The EXAFS study of the Zr-containing catalysts indicated the existence of a “Cu–O–Zr” bonding with a Cu–Zr distance in the range 3.5 to 3.9 A. The results indicated the existence of a Cu–Zr synergistic interaction in these catalysts which improved the catalytic performance in the OSRM reaction

175 citations

Journal ArticleDOI
TL;DR: In this article, the shape-controlled synthesis of metallic nanostructures with a special emphasis on platinum has been studied in the electrocatalysis of anodic reactions for polymer electrolyte fuel cells, where the kinetics of many structure sensitive reactions of technological relevance have been experimentally observed to show drastic changes with shape especially in the nanosize domain, at least in one dimension.
Abstract: Since many metallic nanostructures with different shapes exhibit unique chemical and physical properties, a systematic attempt to synthesize these shape-controlled structures for property–shape correlation remains an important challenge in contemporary materials chemistry. Main difficulties like poor shape selectivity, low yield, presence of impurity phases, difficulty of separation, etc., are exacerbated since metallic structures have high surface energies which favour lower surface areas, and consequently many synthesis strategies, including the use of hard and soft templates and external nucleating agents, are being employed along with theoretical guidelines from density functional calculations on simpler systems. One of the important application areas where these structures have gained profound attention is in electrocatalysis, where the kinetics of many structure-sensitive reactions of technological relevance have been experimentally observed to show drastic changes with shape especially in the nanosize domain, at least in one dimension. Considering their scientific and technological importance, this feature article provides an overview of the recent progress on the shape-controlled synthesis of metallic nanostructures with special emphasis on platinum, and their crucial role in the electrocatalysis of anodic reactions for polymer electrolyte fuel cells.

175 citations

Journal ArticleDOI
TL;DR: An overview of the challenges that are faced by the processes converting lignocellulosic biomass to commodity chemicals is provided and the critical factors involved in engineering new microbial biocatalysts are discussed with more emphasis on commodity chemicals.

175 citations

Journal ArticleDOI
TL;DR: Fe(III) complexes of biuret-modified tetra-amidomacrocyclic ligands (Fe-TAML) that catalyze fast, homogeneous, photochemical WO to give O2, with moderate efficiency, represents the first example of a molecular iron complex catalyzing photochemistry WO through a Fe(V)(O) intermediate.
Abstract: Water splitting, leading to hydrogen and oxygen in a process that mimics natural photosynthesis, is extremely important for devising a sustainable solar energy conversion system. Development of earth-abundant, transition metal-based catalysts that mimic the oxygen-evolving complex of photosystem II, which is involved in oxidation of water to O2 during natural photosynthesis, represents a major challenge. Further, understanding the exact mechanism, including elucidation of the role of active metal-oxo intermediates during water oxidation (WO), is critical to the development of more efficient catalysts. Herein, we report FeIII complexes of biuret-modified tetra-amidomacrocyclic ligands (Fe-TAML; 1a and 1b) that catalyze fast, homogeneous, photochemical WO to give O2, with moderate efficiency (maximum TON = 220, TOF = 0.76 s–1). Previous studies on photochemical WO using iron complexes resulted in demetalation of the iron complexes with concomitant formation of iron oxide nanoparticles (NPs) that were respon...

174 citations

Journal ArticleDOI
TL;DR: Treatment of this effluent using Yarrowia lipolytica NCIM 3589, a marine hydrocarbon-degrading yeast isolated from Mumbai, India, gave a COD reduction of about 95% with a retention time of two days and reduced the COD content to 1500 mg l(-1) which is a 99% reduction from the original.

173 citations


Authors

Showing all 8913 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Tak W. Mak14880794871
John T. O'Brien12181963242
Clive Ballard11773661663
Yoshinori Tokura11785870258
John S. Mattick11636764315
Michael Dean10741963335
Ian G. McKeith10746851954
David J. Burn10044639120
Anil Kumar99212464825
Vikas Kumar8985939185
Detlef W. Bahnemann8851748826
Gautam R. Desiraju8845845301
Praveen Kumar88133935718
Network Information
Related Institutions (5)
Dalian Institute of Chemical Physics
17.1K papers, 577.7K citations

94% related

East China University of Science and Technology
36.4K papers, 763.1K citations

93% related

Beijing University of Chemical Technology
25.5K papers, 587.4K citations

92% related

DuPont
37.1K papers, 945.6K citations

89% related

National Presto Industries
12.2K papers, 512.9K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202238
2021482
2020454
2019471
2018498