scispace - formally typeset
Search or ask a question
Institution

National Chemical Laboratory

FacilityPune, Maharashtra, India
About: National Chemical Laboratory is a facility organization based out in Pune, Maharashtra, India. It is known for research contribution in the topics: Catalysis & Enantioselective synthesis. The organization has 8891 authors who have published 14837 publications receiving 387600 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A closer look is taken at the growth of COFs from mere supramolecular structures to potential industrializable materials.
Abstract: Covalent organic frameworks (COFs) represent a new field of rapidly growing chemical research that takes direct inspiration from diverse covalent bonds existing between atoms. The success of linking atoms in two and three dimensions to construct extended framework structures moved the chemistry of COFs beyond the structures to methodologies, highlighting the possibility of prospective applications. Although structure to property relation in COFs has led to fascinating properties, chemical stability, processability and scalability were some of the important challenges that needed to be overcome for their successful implementation. In this Perspective, we take a closer look at the growth of COFs from mere supramolecular structures to potential industrializable materials.

702 citations

Journal ArticleDOI
TL;DR: In this article, the authors show the presence of adsorbed sites for coordinative saturation of sub-valence states (Ti2+, Ti3+), through hydroxyl incorporation.

653 citations

Journal ArticleDOI
TL;DR: This paper reports the extracellular synthesis of gold and silver nanoparticles using Emblica Officinalis (amla, Indian Gooseberry) fruit extract as the reducing agent to synthesize Ag and Au nanoparticles, their subsequent phase transfer to an organic solution and the transmetallation reaction of hydrophobizedsilver nanoparticles with hydrophOBized chloroaurate ions.
Abstract: The design, synthesis and characterization of biologically synthesized nanomaterials have become an area of significant interest. In this paper, we report the extracellular synthesis of gold and silver nanoparticles using Emblica Officinalis (amla, Indian Gooseberry) fruit extract as the reducing agent to synthesize Ag and Au nanoparticles, their subsequent phase transfer to an organic solution and the transmetallation reaction of hydrophobized silver nanoparticles with hydrophobized chloroaurate ions. On treating aqueous silver sulfate and chloroauric acid solutions with Emblica Officinalis fruit extract, rapid reduction of the silver and chloroaurate ions is observed leading to the formation of highly stable silver and gold nanoparticles in solution. Transmission Electron Microscopy analysis of the silver and gold nanoparticles indicated that they ranged in size from 10 to 20 nm and 15 to 25 nm respectively. Ag and Au nanoparticles thus synthesized were then phase transferred into an organic solution using a cationic surfactant octadecylamine. Transmetallation reaction between hydrophobized silver nanoparticles and hydrophobized chloroaurate ions in chloroform resulted in the formation of gold nanoparticles.

627 citations

Journal ArticleDOI
TL;DR: Electron microscopy analysis of thin sections of the gold actinomycete cells indicated that gold particles with good monodispersity were formed on the cell wall as well as on the cytospasmic membrane, and metal ions were not toxic to the cells and the cells continued to multiply after biosynthesis of thegold nanoparticles.
Abstract: The development of reliable, eco-friendly processes for the synthesis of nanoscale materials is an important aspect of nanotechnology. In this paper, we report on the use of an alkalotolerant actinomycete (Rhodococcus sp.) in the intracellular synthesis of gold nanoparticles of the dimension 5–15 nm. Electron microscopy analysis of thin sections of the gold actinomycete cells indicated that gold particles with good monodispersity were formed on the cell wall as well as on the cytospasmic membrane. The particles are more concentrated on the cytoplasmic membrane than on the cell wall, possibly due to reduction of the metal ions by enzymes present in the cell wall and on the cytoplasmic membrane. The metal ions were not toxic to the cells and the cells continued to multiply after biosynthesis of the gold nanoparticles.

627 citations


Authors

Showing all 8913 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Tak W. Mak14880794871
John T. O'Brien12181963242
Clive Ballard11773661663
Yoshinori Tokura11785870258
John S. Mattick11636764315
Michael Dean10741963335
Ian G. McKeith10746851954
David J. Burn10044639120
Anil Kumar99212464825
Vikas Kumar8985939185
Detlef W. Bahnemann8851748826
Gautam R. Desiraju8845845301
Praveen Kumar88133935718
Network Information
Related Institutions (5)
Dalian Institute of Chemical Physics
17.1K papers, 577.7K citations

94% related

East China University of Science and Technology
36.4K papers, 763.1K citations

93% related

Beijing University of Chemical Technology
25.5K papers, 587.4K citations

92% related

DuPont
37.1K papers, 945.6K citations

89% related

National Presto Industries
12.2K papers, 512.9K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202238
2021482
2020454
2019471
2018498