scispace - formally typeset
Search or ask a question
Institution

National Chemical Laboratory

FacilityPune, Maharashtra, India
About: National Chemical Laboratory is a facility organization based out in Pune, Maharashtra, India. It is known for research contribution in the topics: Catalysis & Enantioselective synthesis. The organization has 8891 authors who have published 14837 publications receiving 387600 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: More studies have to be carried out to generate bagasse samples, which can be used as substrates to produce high levels of cellulases and hemicellulases in proper proportion, leading to efficient use of lignocellulosic materials to produce value-added products.

149 citations

Journal ArticleDOI
TL;DR: In this paper, a new crystalline, microporous titanium silicate with MEL topology (TS-2) has been synthesized and characterized by spectroscopic (XRD, framework IR, UV-VIS), adsorption, and catalytic measurements.

149 citations

Journal ArticleDOI
TL;DR: A facile and scalable one-step synthesis of luminescent GQDs, substitutionally co-doped with N, F and S, of ∼2 nm average size by a microwave treatment of multi-walled carbon nanotubes in a customized ionic liquid medium is reported.
Abstract: Graphene quantum dots (GQDs) are a promising category of materials with remarkable size dependent properties like tunable bandgap and photoluminescence along with the possibility of effective chemical functionalization. Doping of GQDs with heteroatoms is an interesting way of regulating their properties. Herein, we report a facile and scalable one-step synthesis of luminescent GQDs, substitutionally co-doped with N, F and S, of ∼2 nm average size by a microwave treatment of multi-walled carbon nanotubes in a customized ionic liquid medium. The use of an ionic liquid coupled with the use of a microwave technique enables not only an ultrafast process for the synthesis of co-doped GQDs, but also provides excellent photoluminescence quantum yield (70%), perhaps due to the interaction of defect clusters and dopants.

148 citations

Journal ArticleDOI
TL;DR: In this paper, a simple way to produce an efficient metal-free oxygen reduction electrocatalyst from graphene by generating nanopores in the matrix and subsequently establishing nitrogen-doped active sites along the pore openings is demonstrated.
Abstract: A simple way to produce an efficient metal-free oxygen reduction electrocatalyst from graphene by generating nanopores in the matrix and subsequently establishing nitrogen-doped active sites along the pore openings is demonstrated. Well-structured nanoporous graphene (pGr) and photoluminescent graphene quantum dots (GQDs) could be simultaneously generated by a chemically assisted oxidative treatment of graphene. The process helped to knock out small pieces of Gr through epoxide formation, which subsequently resulted in the generation of GQD and pGr simultaneously. A longer oxidation time increased the quantity of GQDs and also resulted in a higher photoluminescent (PL) quantum yield. The PL quantum yield of GQD formed after 72 h of the oxidative treatment (GQD-72) was 15.8%, which is greater than the previous reported values. The TEM images showed matching sizes for GQDs and the pores present in pGr, implying that the pores are generated by the removal of GQDs from graphene during the oxidative treatment. Since pore openings are expected to give higher levels of unsaturation and defect sites in the system and are thus being treated as fertile regions for heteroatom doping, pGr-72 was further subjected to nitrogen (NpGr-72). NpGr-72 displayed excellent activity towards the electrochemical oxygen reduction reaction (ORR) compared to nitrogen-doped non-porous graphene (NGr) and many other reported nitrogen-doped carbon materials. A distinct 50 mV gain in the overpotential and 2.5 times increment in the kinetic current density (jk) have been achieved in the case of NpGr-72 compared to NGr. Interestingly, unlike NGr, NpGr-72 effectively reduced the oxygen molecule with a greater involvement of the preferred four-electron pathway. Additionally, the overpotential difference of NpGr-72 with respect to 20 wt% Pt/C is only 60 mV. Additionally, in a single cell evaluation under anion exchange membrane fuel cell (AEMFC) conditions, NpGr-72 exhibited a maximum power density of 27 mW cm−2, which is significantly higher than the corresponding value of 10 mW cm−2 obtained for NGr. Thus, the overall enhancement in the performance characteristics of NpGr-72 is attributed to the higher content of nitrogen (7.8 wt%) and its large proportion of desired chemical environment, which could be established by utilizing the high level of carbon unsaturation around the pore openings.

148 citations

Journal ArticleDOI
TL;DR: In this article, the authors addressed the outline of reverse osmosis (RO) and membrane distillation (MD) process for desalination of brackish water and proposed a better alternative to RO.
Abstract: In recent years, the increasing threat to groundwater quality due to human activities has become a matter of great concern. The groundwater quality problems present today are caused by contamination and by overexploitation, or by combination of both, which are faced by many Indian states. Today, reverse osmosis (RO) membranes are the leading technology for desalination of groundwater because of their strong separation capabilities and exhibiting a great potential for treatment of waters worldwide. However, the RO process had some problems due to the formation of polarization films because high pressure operation and by-products which may generate bacteria and fouling. Also, high energy consumption and brine disposal problem is faced in RO process due to the limited recovery of water. These problems may be overcome by other membrane thermal process such as a membrane distillation (MD). This paper addresses the outline of RO and MD process for desalination. RO has developed over the past 40 years and MD is an emerging technology for brackish water desalination and yet is not fully implemented in industry. The MD is the better alternative to RO for desalination theoretically found in the literature.

148 citations


Authors

Showing all 8913 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Tak W. Mak14880794871
John T. O'Brien12181963242
Clive Ballard11773661663
Yoshinori Tokura11785870258
John S. Mattick11636764315
Michael Dean10741963335
Ian G. McKeith10746851954
David J. Burn10044639120
Anil Kumar99212464825
Vikas Kumar8985939185
Detlef W. Bahnemann8851748826
Gautam R. Desiraju8845845301
Praveen Kumar88133935718
Network Information
Related Institutions (5)
Dalian Institute of Chemical Physics
17.1K papers, 577.7K citations

94% related

East China University of Science and Technology
36.4K papers, 763.1K citations

93% related

Beijing University of Chemical Technology
25.5K papers, 587.4K citations

92% related

DuPont
37.1K papers, 945.6K citations

89% related

National Presto Industries
12.2K papers, 512.9K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202238
2021482
2020454
2019471
2018498