scispace - formally typeset
Search or ask a question
Institution

National Chemical Laboratory

FacilityPune, Maharashtra, India
About: National Chemical Laboratory is a facility organization based out in Pune, Maharashtra, India. It is known for research contribution in the topics: Catalysis & Nanoparticle. The organization has 8891 authors who have published 14837 publications receiving 387600 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the photodegradation of organic contaminants using the fluorescence emission characteristics of ZnO nanoparticles (ZnO-nano) in aqueous solutions is investigated.
Abstract: Nanoscale photocatalysts have attracted much attention due to their high surface area to volume ratios. This work investigates the photodegradation of organic contaminants using the fluorescence emission characteristics of ZnO nanoparticles (ZnO-nano) in aqueous solutions. This is accomplished by preparing nanocrystalline ZnO; the presence of organic contaminants in water is readily detected from the quenching of fluorescence observed from ZnO semiconductor films. Photolysis of ZnO thin films immersed into an aqueous system containing organic contaminants results in the degradation of the contaminants. A comprehensive study has been done involving several organic contaminants in water (like aliphatic and aromatic chloro compounds as well as some commonly used aromatic solvents) to check the suitability of ZnO-nano as an efficient photocatalyst. The ZnO nanoparticles not only serve as a better catalytic system compared to bulk ZnO and commercially available Degussa TiO2 in achieving degradation of the added contaminants, but unlike other semiconductor systems can also act as a non-specific sensor for the presence of these common contaminants in water. A total cleanup of a cocktail of contaminants in water was also achieved using the ZnO-nano.

563 citations

Journal ArticleDOI
TL;DR: The studies indicate that oral and nasal administration of insulin loaded chitosan reduced gold nanoparticles has led to improved pharmacodynamic activity and prove to be promising in controlling the postprandial hyperglycemia.
Abstract: Colloidal metallic systems have been recently investigated in the area of nanomedicine. Gold nanoparticles have found themselves useful for diagnostic and drug delivery applications. Herein we have reported a novel method for synthesis of gold nanoparticles using a natural, biocompatible and biodegradable polymer; chitosan. Use of chitosan serves dual purpose by acting as a reducing agent in the synthesis of gold nanoparticles and also promotes the penetration and uptake of peptide hormone insulin across the mucosa. To demonstrate the use of chitosan reduced gold nanoparticles as carriers for drug delivery, we report herein the transmucosal delivery of insulin loaded gold nanoparticles. Gold nanoparticles were prepared using different concentrations of chitosan (from 0.01% w/v up to 1% w/v). The gold nanoparticles were characterized for surface plasmon band, zeta potential, surface morphology, in vitro diffusion studies and fluorescence spectroscopy. The in vivo studies in diabetic male Wistar rats were carried out using insulin loaded chitosan reduced gold nanoparticles. Varying concentrations of chitosan used for the synthesis of gold nanoparticles demonstrated that the nanoparticles obtained at higher chitosan concentrations (>0.1% w/v) were stable showing no signs of aggregation. The nanoparticles also showed long term stability in terms of aggregation for about 6 months. Insulin loading of 53% was obtained and found to be stable after loading. Blood glucose lowering at the end of 2 h following administration of insulin loaded gold nanoparticles to diabetic rats was found to be 30.41 and 20.27% for oral (50 IU/kg) and nasal (10 IU/kg), respectively. Serum gold level studies have demonstrated significant improvement in the uptake of chitosan reduced gold nanoparticles. The synthesis of gold nanoparticles using a biocompatible polymer, chitosan would improve its surface properties for binding of biomolecules. Our studies indicate that oral and nasal administration of insulin loaded chitosan reduced gold nanoparticles has led to improved pharmacodynamic activity. Thus, chitosan reduced gold nanoparticles loaded with insulin prove to be promising in controlling the postprandial hyperglycemia.

548 citations

Journal ArticleDOI
03 Feb 2001-Langmuir
TL;DR: The enzyme/colloidal gold conjugates were prepared by a simple protein-friendly process and the enzymatic activity of the bioconjugates is reported and the intactness of secondary and tertiary structures of the enzyme are reported.
Abstract: Pepsin−colloidal gold conjugates were prepared by a simple protein-friendly process and the enzymatic activity of the bioconjugates is reported. The pepsin−gold conjugates are obtained by mixing colloidal gold and protein solutions at pH = 3 and, thereafter, centrifugation, washing, and redispersion of the pepsin−gold conjugate material in water. The bioconjugates in solution were characterized by UV−vis spectroscopy, fluorescence spectroscopy, and biocatalytic activity measurements while films of the bioconjugate material obtained by solvent evaporation on suitable substrates were further analyzed by scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), transmission electron spectroscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). While TEM and SEM measurements showed aggregates of the enzyme/colloidal gold conjugates, the intactness of secondary and tertiary structures of the enzyme, as determined by FTIR and fluorescence s...

545 citations

Journal ArticleDOI
TL;DR: This tutorial review is aimed at highlighting recent developments in transition-metal-free carbon-carbon and carbon-heteroatom bond-forming reactions utilizing a versatile class of reactive intermediates, viz., arynes, which hold the potential for numerous applications in organic synthesis.
Abstract: This tutorial review is aimed at highlighting recent developments in transition-metal-free carbon–carbon and carbon–heteroatom bond-forming reactions utilizing a versatile class of reactive intermediates, viz., arynes, which hold the potential for numerous applications in organic synthesis. Key to the success of the resurgence of interest in the rich chemistry of arynes is primarily the mild condition for their generation by the fluoride-induced 1,2-elimination of 2-(trimethylsilyl)aryl triflates. Consequently, arynes have been employed for the construction of multisubstituted arenes with structural diversity and complexity. The versatile transition-metal-free applications of arynes include cycloaddition reactions, insertion reactions and multicomponent reactions. In addition, arynes have found applications in natural product synthesis. Herein, we present a concise account of the major developments that occurred in this field during the past eight years.

534 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have described the durability of different polymer nanocomposites mainly under thermal and photoageing, and discussed the effect of these factors on the performance.

533 citations


Authors

Showing all 8913 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Tak W. Mak14880794871
John T. O'Brien12181963242
Clive Ballard11773661663
Yoshinori Tokura11785870258
John S. Mattick11636764315
Michael Dean10741963335
Ian G. McKeith10746851954
David J. Burn10044639120
Anil Kumar99212464825
Vikas Kumar8985939185
Detlef W. Bahnemann8851748826
Gautam R. Desiraju8845845301
Praveen Kumar88133935718
Network Information
Related Institutions (5)
Dalian Institute of Chemical Physics
17.1K papers, 577.7K citations

94% related

East China University of Science and Technology
36.4K papers, 763.1K citations

93% related

Beijing University of Chemical Technology
25.5K papers, 587.4K citations

92% related

DuPont
37.1K papers, 945.6K citations

89% related

National Presto Industries
12.2K papers, 512.9K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202238
2021482
2020454
2019471
2018498