scispace - formally typeset
Search or ask a question
Institution

National Cheng Kung University

EducationTainan City, Taiwan
About: National Cheng Kung University is a education organization based out in Tainan City, Taiwan. It is known for research contribution in the topics: Population & Thin film. The organization has 49723 authors who have published 69799 publications receiving 1437420 citations. The organization is also known as: NCKU.


Papers
More filters
Journal ArticleDOI
TL;DR: Emergence of pre-S mutants may account for the life‐long persistence and discrepancy of HBsAg in serum and liver in HBV and may confer growth advantage in view of the clustering proliferation of hepatocytes harboring pre‐S2 mutant.

199 citations

Journal ArticleDOI
TL;DR: This paper demonstrates that the existing solutions for anonymous user authentication in WSN are impractical, and proposes a realistic authentication protocol for WSN, which can ensure various imperative security properties like user anonymity, untraceability, forward/backward secrecy, perfect forward secrecy, etc.
Abstract: User authentication in wireless sensor networks (WSN) is a critical security issue due to their unattended and hostile deployment in the field. Since the sensor nodes are equipped with limited computing power, storage, and communication modules, authenticating remote users in such resource-constrained environment is a paramount security concern. Until now, impressive efforts have been made for designing authentication schemes with user anonymity by using only the lightweight cryptographic primitives, such as symmetric key encryption/decryption and hash functions. However, to the best of our knowledge, none has succeeded so far. In this paper, we take an initial step to shed light on the rationale underlying this prominent issue. In order to do that here at first, we demonstrate that the existing solutions for anonymous user authentication in WSN are impractical. Subsequently, we propose a realistic authentication protocol for WSN, which can ensure various imperative security properties like user anonymity, untraceability, forward/backward secrecy, perfect forward secrecy, etc.

199 citations

Journal ArticleDOI
TL;DR: The generation of cross‐reactive autoantibodies against endothelial cells would lead to their dysfunction, which may play a role in the pathogenesis of dengue virus infection.
Abstract: Dengue virus infection causes a wide range of diseases from the mild febrile illness dengue fever to the life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage and hemorrhagic syndrome are the clinical features associated with dengue infection, yet the mechanisms remain unclear. In this study, the cross-reactivity of dengue patient sera with endothelial cells was demonstrated. There were higher percentages of endothelial cells reactive with dengue hemorrhagic fever/dengue shock syndrome patient sera than those with dengue fever patient sera. The percentages of endothelial cells reactive with patient serum IgM were higher than those with IgG. Further studies showed that the endothelial cell binding activity was inhibited by pretreatment with dengue virus nonstructural protein 1 (NS1). The antibodies against NS1 produced after dengue virus infection may, at least in part, account for the cross-reactivity of patient sera with endothelial cells. Furthermore, dengue patient sera induced endothelial cell apoptosis via a caspase-dependent pathway that was also inhibited by NS1 pretreatment. In addition to apoptosis, patient sera caused cell lysis in the presence of complement, and DHF/DSS patient sera showed higher percentages of cytotoxicity than dengue fever patient sera. Thus, the generation of cross-reactive autoantibodies against endothelial cells would lead to their dysfunction, which may play a role in the pathogenesis of dengue virus infection.

199 citations

Proceedings ArticleDOI
01 Nov 1998
TL;DR: By appropriately connecting the inputs of all circuits under test during ATPG process such that the generated test patterns can be broadcast to all scan chains when actual testing is executed, it is shown that 177 and 280 test patterns are enough to detect all detectable faults in all 10 ISCas'85 combinational circuits and 10 largest ISCAS'89 sequential circuits.
Abstract: Single scan chain architectures suffer from long test application time, while multiple scan chain architectures require large pin overhead and are not supported by boundary scan. We present a novel method to allow a single input line to support multiple scan chains. By appropriately connecting the inputs of all circuits under test during ATPG process such that the generated test patterns can be broadcast to all scan chains when actual testing is executed, we show that 177 and 280 test patterns are enough to detect all detectable faults in all 10 ISCAS'85 combinational circuits and 10 largest ISCAS'89 sequential circuits, respectively.

199 citations

Journal ArticleDOI
TL;DR: This study develops a detailed understanding of the influences of various biosensor design parameters in order to enhance the sensitivity and detection limit capabilities of such devices.

199 citations


Authors

Showing all 49872 results

NameH-indexPapersCitations
Yi Chen2174342293080
Yang Yang1642704144071
R. E. Hughes1541312110970
Mercouri G. Kanatzidis1521854113022
Thomas J. Smith1401775113919
Hui Li1352982105903
Gerald M. Reaven13379980351
Chi-Huey Wong129122066349
Joseph P. Vacanti11944150739
Kai Nan An10995351638
Ding-Shinn Chen10477446068
James D. Neaton10133164719
David C. Christiani100105255399
Jo Shu Chang9963937487
Yu Shyr9854239527
Network Information
Related Institutions (5)
National Taiwan University
130.8K papers, 3.3M citations

98% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202373
2022315
20213,425
20203,154
20192,895
20182,764