scispace - formally typeset
Search or ask a question
Institution

National Cheng Kung University

EducationTainan City, Taiwan
About: National Cheng Kung University is a education organization based out in Tainan City, Taiwan. It is known for research contribution in the topics: Population & Thin film. The organization has 49723 authors who have published 69799 publications receiving 1437420 citations. The organization is also known as: NCKU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examined the effects of knowledge attribute, alliance characteristics, and firm's absorptive capacity on the performance of knowledge transfer and found that knowledge transfer performance is positively affected by the explicitness of knowledge.
Abstract: The main purpose of this study is to examine the effects of knowledge attribute, alliance characteristics, and firm's absorptive capacity on the performance of knowledge transfer. Regression analysis was used to test the hypotheses in a sample of 137 alliance cases. The findings suggest that knowledge transfer performance is positively affected by the explicitness of knowledge and firm's absorptive capacity; that equity-based alliance will transfer tacit knowledge more effectively while contract-base alliance is more effective for the transfer of explicit knowledge; and that trust and adjustment have positive effects while conflict possesses a curvilinear effect on knowledge transfer performance.

289 citations

Journal ArticleDOI
TL;DR: Current research on the broad classification of the NPs that have shown in vitro antimicrobial activity against MDROs, including the ESKAPE pathogens were summarized.
Abstract: Nanotechnology using nanoscale materials is increasingly being utilized for clinical applications, especially as a new paradigm for infectious diseases. Infections caused by multidrug-resistant organisms (MDROs) are emerging as causes of morbidity and mortality worldwide. Antibiotic options for infections caused by MDROs are often limited. These clinical challenges highlight the critical demand for alternative and effective antimicrobial strategies. Nanoparticles (NPs) can penetrate the cell membrane of pathogenic microorganisms and interfere with important molecular pathways, formulating unique antimicrobial mechanisms. In combination with optimal antibiotics, NPs have demonstrated synergy and may aid in limiting the global crisis of emerging bacterial resistance. In this review, we summarized current research on the broad classification of the NPs that have shown in vitro antimicrobial activity against MDROs, including the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The pharmacokinetics and pharmacodynamic characteristics of NPs and bacteria-resistant mechanisms to NPs were also discussed.

289 citations

Journal ArticleDOI
TL;DR: Experimental evidence supports the roles of mitochondrial dysfunction and oxidative stress as determinants of neuronal death as well as endogenous protective mechanisms after stroke.
Abstract: The primary physiological function of mitochondria is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Overproduction of reactive oxygen species (ROS) as byproducts generated from mitochondria have been implicated in acute brain injuries such as stroke from cerebral ischemia. It was well-documented that mitochondria-dependent apoptotic pathway involves pro- and anti-apoptotic protein binding, release of cytochrome c, leading ultimately to neuronal death. On the other hand, mitochondria also play a role to counteract the detrimental effects elicited by excessive oxidative stress. Recent studies have revealed that oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves peroxisome proliferative activated receptor-γ (PPARγ) co-activator 1α (PGC1-α). PGC1-α is a master regulator of ROS scavenging enzymes including manganese superoxide dismutase 2 and the uncoupling protein 2, both are mitochondrial proteins, and may contribute to neuronal survival. PGC1-α is also involved in mitochondrial biogenesis that is vital for cell survival. Experimental evidence supports the roles of mitochondrial dysfunction and oxidative stress as determinants of neuronal death as well as endogenous protective mechanisms after stroke. This review aims to summarize the current knowledge focusing on the molecular mechanisms underlying cerebral ischemia involving ROS, mitochondrial dysfunction, apoptosis, mitochondrial proteins capable of ROS scavenging, and mitochondrial biogenesis.

289 citations

Journal ArticleDOI
TL;DR: The results suggest that C4, C5 alcohol stress impacts the cell differently compared with the general solvent or antibiotic stresses, and improved isobutanol tolerance did not increase the final titer of isOButanol production.
Abstract: Escherichia coli has been engineered to produce isobutanol, with titers reaching greater than the toxicity level. However, the specific effects of isobutanol on the cell have never been fully understood. Here, we aim to identify genotype–phenotype relationships in isobutanol response. An isobutanol-tolerant mutant was isolated with serial transfers. Using whole-genome sequencing followed by gene repair and knockout, we identified five mutations (acrA, gatY, tnaA, yhbJ, and marCRAB) that were primarily responsible for the increased isobutanol tolerance. We successfully reconstructed the tolerance phenotype by combining deletions of these five loci, and identified glucosamine-6-phosphate as an important metabolite for isobutanol tolerance, which presumably enhanced membrane synthesis. The isobutanol-tolerant mutants also show increased tolerance to n-butanol and 2-methyl-1-butanol, but showed no improvement in ethanol tolerance and higher sensitivity to hexane and chloramphenicol than the parental strain. These results suggest that C4, C5 alcohol stress impacts the cell differently compared with the general solvent or antibiotic stresses. Interestingly, improved isobutanol tolerance did not increase the final titer of isobutanol production.

288 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used mid-infrared optoelectronic microscopy to investigate the Berry curvature in monolayer WTe2 and observed an in-plane circular photogalvanic current even under normal incidence.
Abstract: Recent experimental evidence for the quantum spin Hall (QSH) state in monolayer WTe2 has linked the fields of two-dimensional materials and topological physics1–7. This two-dimensional topological crystal also displays unconventional spin–torque8 and gate-tunable superconductivity7. Whereas the realization of the QSH has demonstrated the nontrivial topology of the electron wavefunctions of monolayer WTe2, the geometrical properties of the wavefunction, such as the Berry curvature9, remain unstudied. Here we utilize mid-infrared optoelectronic microscopy to investigate the Berry curvature in monolayer WTe2. By optically exciting electrons across the inverted QSH gap, we observe an in-plane circular photogalvanic current even under normal incidence. The application of an out-of-plane displacement field allows further control of the direction and magnitude of the photocurrent. The observed photocurrent reveals a Berry curvature dipole that arises from the nontrivial wavefunctions near the inverted gap edge. The Berry curvature dipole and strong electric field effect are enabled by the inverted band structure and tilted crystal lattice of monolayer WTe2. Such an electrically switchable Berry curvature dipole may facilitate the observation of a wide range of quantum geometrical phenomena such as the quantum nonlinear Hall10,11, orbital-Edelstein12 and chiral polaritonic effects13,14.

287 citations


Authors

Showing all 49872 results

NameH-indexPapersCitations
Yi Chen2174342293080
Yang Yang1642704144071
R. E. Hughes1541312110970
Mercouri G. Kanatzidis1521854113022
Thomas J. Smith1401775113919
Hui Li1352982105903
Gerald M. Reaven13379980351
Chi-Huey Wong129122066349
Joseph P. Vacanti11944150739
Kai Nan An10995351638
Ding-Shinn Chen10477446068
James D. Neaton10133164719
David C. Christiani100105255399
Jo Shu Chang9963937487
Yu Shyr9854239527
Network Information
Related Institutions (5)
National Taiwan University
130.8K papers, 3.3M citations

98% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202373
2022315
20213,425
20203,154
20192,895
20182,764