scispace - formally typeset
Search or ask a question

Showing papers by "National Institute of Advanced Industrial Science and Technology published in 2011"


Journal ArticleDOI
TL;DR: A class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes capable of measuring strains up to 280% with high durability, fast response and low creep is reported.
Abstract: Thin films of single-wall carbon nanotube have been used to create stretchable devices that can be incorporated into clothes and used to detect human motions.

2,790 citations


Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: It is shown that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid–air interfaces.
Abstract: Printing electronic devices using semiconducting 'ink' is seen as a promising route to cheap, large-area and flexible electronics, but the performance of such devices suffers from the relatively poor crystallinity of the printed material. Hiromi Minemawari and colleagues have developed an inkjet-based printing technique involving controlled mixing on a surface of two solutions — the semiconductor (C8-BTBT) in its solvent and a liquid in which the semiconductor is insoluble. The products of this antisolvent crystallization technique are thin semiconductor films with exceptionally high and uniform crystallinity. The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science1. Whether based on inorganic2,3,4,5 or organic6,7,8 materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. ‘Printed electronics’ is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials9,10,11. However, because of the strong self-organizing tendency of the deposited materials12,13, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization14 with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid–air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm2 V−1 s−1. This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

1,505 citations


Journal ArticleDOI
TL;DR: LAST, the open source implementation of adaptive seeds, enables fast and sensitive comparison of large sequences with arbitrarily nonuniform composition, and guarantees that the number of matches increases linearly, instead of quadratically, with sequence length.
Abstract: The main way of analyzing biological sequences is by comparing and aligning them to each other. It remains difficult, however, to compare modern multi-billionbase DNA data sets. The difficulty is caused by the nonuniform (oligo)nucleotide composition of these sequences, rather than their size per se. To solve this problem, we modified the standard seed-and-extend approach (e.g., BLAST) to use adaptive seeds. Adaptive seeds are matches that are chosen based on their rareness, instead of using fixed-length matches. This method guarantees that the number of matches, and thus the running time, increases linearly, instead of quadratically, with sequence length. LAST, our open source implementation of adaptive seeds, enables fast and sensitive comparison of large sequences with arbitrarily nonuniform composition.

1,097 citations


Journal ArticleDOI
TL;DR: In this work, with a zeolite-type metal-organic framework as both a precursor and a template and furfuryl alcohol as a second precursor, nanoporous carbon material has been prepared with an unexpectedly high surface area and considerable hydrogen storage capacity.
Abstract: In this work, with a zeolite-type metal-organic framework as both a precursor and a template and furfuryl alcohol as a second precursor, nanoporous carbon material has been prepared with an unexpectedly high surface area (3405 m(2)/g, BET method) and considerable hydrogen storage capacity (2.77 wt % at 77 K and 1 atm) as well as good electrochemical properties as an electrode material for electric double layer capacitors. The pore structure and surface area of the resultant carbon materials can be tuned simply by changing the calcination temperature.

1,044 citations


Journal ArticleDOI
TL;DR: The MAX phases are a group of layered ternary compounds with the general formula Mn+1AXn (M: early transition metal; A: group A element; X: C and/or N; n = 1-3), which combine some properties of metals such as good electrical and thermal conductivity, machinability, low hardness, thermal shock resistance and damage tolerance, with those of ceramics, such as high elastic moduli, high temperature strength, and oxidation and corrosion resistance as mentioned in this paper.
Abstract: The MAX phases are a group of layered ternary compounds with the general formula Mn+1AXn (M: early transition metal; A: group A element; X: C and/or N; n = 1–3), which combine some properties of metals, such as good electrical and thermal conductivity, machinability, low hardness, thermal shock resistance and damage tolerance, with those of ceramics, such as high elastic moduli, high temperature strength, and oxidation and corrosion resistance. The publication of papers on the MAX phases has shown an almost exponential increase in the past decade. The existence of further MAX phases has been reported or proposed. In addition to surveying this activity, the synthesis of MAX phases in the forms of bulk, films and powders is reviewed, together with their physical, mechanical and corrosion/oxidation properties. Recent research and development has revealed potential for the practical application of the MAX phases (particularly using the pressureless sintering and physical vapour deposition coating rout...

851 citations


Journal ArticleDOI
TL;DR: Catalytic studies show a strong bimetallic synergistic effect of core-shell structured Au@Ag NPs, which have much higher catalytic activities than alloy and monometallic NPs.
Abstract: For the first time, this work presents Au@Ag core−shell nanoparticles (NPs) immobilized on a metal−organic framework (MOF) by a sequential deposition−reduction method. The small-size Au@Ag NPs reveal the restriction effects of the pore/surface structure in the MOF. The modulation of the Au/Ag ratio can tune the composition and a reversed Au/Ag deposition sequence changes the structure of Au−Ag NPs, while a posttreatment process transforms the core−shell NPs to a AuAg alloy. Catalytic studies show a strong bimetallic synergistic effect of core−shell structured Au@Ag NPs, which have much higher catalytic activities than alloy and monometallic NPs.

820 citations


Journal ArticleDOI
TL;DR: A simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns is reported.
Abstract: Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel.

795 citations


Journal ArticleDOI
TL;DR: Green et al. as discussed by the authors provided guidelines for the inclusion of results into these tables, which not only provides an authoritative summary of the current state of the art but also encourages researchers to seek independent confir-mation of results and to report results on a standardised basis.
Abstract: Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells andmodulesarepresented.GuidelinesforinclusionofresultsintothesetablesareoutlinedandnewentriessinceJune2010arereviewed. Copyright # 2010 John Wiley & Sons, Ltd. KEYWORDSsolar cell efficiency; photovoltaic efficiency; energy conversion efficiency*CorrespondenceMartin A. Green, ARC Photovoltaics Centre of Excellence, University of New South Wales, Sydney 2052, Australia.E-mail: m.green@unsw.edu.auReceived 12 October 2010 1. INTRODUCTION Since January 1993, ‘Progress in Photovoltaics’ haspublished six monthly listings of the highest confirmedefficiencies for a range of photovoltaic cell and moduletechnologies [1–3]. By providing guidelines for theinclusion of results into these tables, this not only providesan authoritative summary of the current state of the art butalso encourages researchers to seek independent confir-mation of results and to report results on a standardisedbasis. In a recent version of these tables (Version 33) [2],results were updated to the new internationally acceptedreferencespectrum(IEC60904–3,Ed.2,2008),wherethiswas possible.Themostimportantcriterionforinclusionofresultsintothe tables is that they must have been measured by arecognised test centre listed elsewhere [1]. A distinction ismade between three different eligible areas: total area;aperture area and designated illumination area [1]. ‘Activearea’ efficiencies are not included. There are also certainminimum values of the area sought for the different devicetypes (above 0.05cm

786 citations


Journal ArticleDOI
TL;DR: An overview of the recent developments of porous MOFs as platforms in the functional applications of sorption and separation, heterogeneous catalysis, as supports/host matrices for metal nanoparticles, and as templates/nanoreactors for new material preparation are provided.

783 citations


Journal ArticleDOI
TL;DR: In this paper, a review of hybrid renewable/alternative energy (RE/AE) power generation systems focusing on energy sustainability is presented, highlighting some important issues and challenges in the design and energy management of hybrid RE/AE systems.
Abstract: This paper, prepared by a special task force of the IEEE PES Renewable Technologies Subcommittee, is a review of hybrid renewable/alternative energy (RE/AE) power generation systems focusing on energy sustainability. It highlights some important issues and challenges in the design and energy management of hybrid RE/AE systems. System configurations, generation unit sizing, storage needs, and energy management and control are addressed. Statistics on the current status and future trend of renewable power generation, as well as some critical challenges facing the widespread deployment of RE/AE power generation technologies and vision for future research in this area are also presented. The comprehensive list of references given at the end of the paper should be helpful to researchers working in this area.

701 citations


Journal ArticleDOI
Olle Terenius1, Alexie Papanicolaou2, Alexie Papanicolaou3, Jennie S. Garbutt4, Ioannis Eleftherianos5, Hanneke Huvenne6, Sriramana Kanginakudru7, Merete Albrechtsen8, Chunju An9, Jean Luc Aymeric10, Andrea Barthel11, Piotr Bebas12, Kavita Bitra13, Alejandra Bravo14, François Chevalier10, Derek Collinge2, Derek Collinge15, Cristina M. Crava16, Ruud A. de Maagd17, Bernard Duvic10, Martin A. Erlandson18, Martin A. Erlandson19, Ingrid Faye20, G Felfoldi21, Haruhiko Fujiwara22, Ryo Futahashi22, Ryo Futahashi23, Archana S. Gandhe7, H.S. Gatehouse24, L. N. Gatehouse24, Jadwiga M. Giebultowicz25, Isabel Gómez14, Cornelis J. P. Grimmelikhuijzen8, Astrid T. Groot11, Frank Hauser8, David G. Heckel11, Dwayne D. Hegedus19, Dwayne D. Hegedus18, Steven Hrycaj3, Lihua Huang2, J. Joe Hull26, Kostas Iatrou6, Masatoshi Iga6, Michael R. Kanost9, Joanna Kotwica12, Changyou Li2, Jianghong Li2, Jisheng Liu6, Magnus Lundmark8, Shogo Matsumoto4, Martina Meyering-Vos7, Peter J. Millichap4, Antónia Monteiro8, Nirotpal Mrinal7, Teruyuki Niimi9, Daniela Nowara8, Atsushi Ohnishi4, Vicencio Oostra27, Katsuhisa Ozaki, Maria P. Papakonstantinou6, Aleksandar Popadic3, Manchikatla Venkat Rajam12, Suzanne V. Saenko27, Robert M. Simpson24, Mario Soberón14, Michael R. Strand13, Shuichiro Tomita13, Umut Toprak19, Ping Wang2, Choon Wei Wee15, Steven Whyard28, Wenqing Zhang17, Javaregowda Nagaraju7, Richard H. ffrench-Constant3, Salvador Herrero16, Salvador Herrero17, Karl H.J. Gordon2, Luc Swevers6, Guy Smagghe6 
TL;DR: Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity and that gene expression in epidermal tissues seems to be most difficult to silence.

Journal ArticleDOI
TL;DR: The finding of a huge spin-orbit interaction effect in a polar semiconductor composed of heavy elements, BiTeI, where the bulk carriers are ruled by large Rashba-likespin splitting is described, confirming that the spin splitting is indeed derived from bulk atomic configurations.
Abstract: A very large Rashba-type spin splitting, which is a consequence of spin–orbit interaction, has been observed in the heavy-element semiconductor BiTeI. The results show the possibility, in principle, of using the material in spintronics devices in which the electron spin is controlled by electric currents.

Journal ArticleDOI
TL;DR: The resulting composites represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage.
Abstract: Bimetallic Au–Pd nanoparticles (NPs) were successfully immobilized in the metal–organic frameworks (MOFs) MIL-101 and ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) using a simple liquid impregnation method. The resulting composites, Au–Pd/MIL-101 and Au–Pd/ED-MIL-101, represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage. Au–Pd NPs with strong bimetallic synergistic effects have a much higher catalytic activity and a higher tolerance with respect to CO poisoning than monometallic Au and Pd counterparts.

Journal ArticleDOI
TL;DR: GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds are demonstrated.
Abstract: Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating1 or some other excitation process2,3,4,5. For example, switching the composite Ge2Sb2Te5 (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude6, and also increases reflectivity across the visible spectrum7,8. Moreover, phase-change memory based on GST is scalable9,10,11, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses1,6. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process12,13. In particular, aligning the c-axis of a hexagonal Sb2Te3 layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb2Te3 interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds. Limiting the movement of Ge atoms to one dimension improves the performance of data-storage devices based on the Ge–Sb–Te material system.

Journal ArticleDOI
Seiji Kawamura1, Hiroo Kunimori2, Mizuhiko Hosokawa2, Ryuichi Fujita3, Keiichi Maeda4, Hisa-aki Shinkai5, Takahiro Tanaka6, Yaka Wakabayashi6, Hideki Ishihara7, Kazutaka Nishiyama8, Ken-ichi Ueda9, Kaiki Taro Inoue10, Kazuhiro Yamamoto8, Kunihito Ioka, Feng-Lei Hong11, Yoshiki Tsunesada12, Kenji Numata13, Masaru Shibata6, Hitoshi Kuninaka8, Kazuhiro Hayama1, Chul-Moon Yoo6, Kazuhiro Agatsuma1, Mitsuru Musha9, Shinji Miyoki14, Yasufumi Kojima15, Yumiko Ejiri16, Takamori Akiteru14, Kentaro Somiya4, Dan Chen14, Tadayuki Takahashi8, Shiho Kobayashi17, Mitsuhiro Fukushima1, Takashi Nakamura6, Naoshi Sugiyama18, Yuta Michimura14, Yoshiyuki Obuchi1, Ayaka Shoda14, Kei Kotake1, Shihori Sakata, Takeshi Chiba19, Yoichi Aso14, Shigeo Nagano2, Tomohiro Harada20, Kiwamu Izumi14, Nobuyuki Kanda7, Isao Kawano8, Nobuki Kawashima10, Yasuo Torii1, Motohiro Enoki21, Yoshiaki Himemoto19, Hirotaka Takahashi22, Yudai Suwa6, Hisashi Hirabayashi, Hiroyuki Ito2, Keitaro Takahashi18, Kiyotomo Ichiki18, Kazuhiro Nakazawa14, Morio Toyoshima2, Takashi Hiramatsu6, Hiroyuki Nakano23, Hiroyuki Koizumi8, Ke-Xun Sun24, Toshikazu Ebisuzaki, Kent Yagi6, Takeshi Ikegami11, Koji Arai25, Kouji Nakamura1, Norio Okada1, Takeshi Takashima8, Takehiko Ishikawa8, K. Okada14, Wataru Kokuyama14, Kakeru Takahashi14, Masa-Katsu Fujimoto1, Ryuichi Takahashi26, Ryo Saito14, K. Tsubono14, Osamu Miyakawa14, Ken-ichi Oohara27, Hideyuki Horisawa28, Hideharu Ishizaki1, Shigenori Moriwaki14, Norichika Sago6, Masashi Ohkawa27, Fuminobu Takahashi14, Tatsuaki Hashimoto8, Takashi Sato27, Sachiko Kuroyanagi14, Umpei Miyamoto20, Kazuaki Kuroda14, Toshifumi Futamase29, Fumiko Kawazoe, Hideyuki Tagoshi30, Yoshinori Nakayama31, Masatake Ohashi14, Yoshiharu Eriguchi14, Toshitaka Yamazaki1, Tadashi Takano19, Hiroshi Yamakawa6, Kenta Kiuchi6, Ken-ichi Nakao7, Taiga Noumi14, Kazunori Kohri, Shinichi Nakasuka14, Wataru Hikida30, Hideo Matsuhara8, Isao Naito27, Tomotada Akutsu1, Shijun Yoshida29, Nobuyuki Matsumoto14, Masa-aki Sakagami6, Naoko Ohishi1, Ikkoh Funaki8, Hajime Sotani32, Taizoh Yoshino16, Atsushi Taruya14, Mutsuko Y. Morimoto8, E. Nishida16, Atsushi J. Nishizawa6, Hideki Asada26, Toshiyuki Morisawa6, Shinji Mukohyama14, Shuichi Sato33, Keisuke Taniguchi14, Yousuke Itoh34, Shinji Tsujikawa35, Rieko Suzuki16, Keiko Kokeyama36, Misao Sasaki6, Naoki Seto6, Koji Ishidoshiro14, Ryutaro Takahashi1, Shin-ichiro Sakai8, Hiroyuki Tashiro6, Motoyuki Saijo20, Naoko Kishimoto6, Masaki Ando6, Akitoshi Ueda1, Koh-suke Aoyanagi4, Yoshihide Kozai, Masayoshi Utashima8, Yoshito Niwa14, Jun'ichi Yokoyama14, Nobuyuki Tanaka1, Akito Araya14 

Journal ArticleDOI
TL;DR: The oxidative stability of glyme molecules is enhanced by the complex formation with alkali metal cations, resulting in the highest occupied molecular orbital (HOMO) energy level lowering of a glyme molecule, which is confirmed by ab initio molecular orbital calculations.
Abstract: The oxidative stability of glyme molecules is enhanced by the complex formation with alkali metal cations. Clear liquid can be obtained by simply mixing glyme (triglyme or tetraglyme) with lithium bis(trifluoromethylsulfonyl)amide (Li[TFSA]) in a molar ratio of 1:1. The equimolar complex [Li(triglyme or tetraglyme)(1)][TFSA] maintains a stable liquid state over a wide temperature range and can be regarded as a room-temperature ionic liquid consisting of a [Li(glyme)(1)](+) complex cation and a [TFSA](-) anion, exhibiting high self-dissociativity (ionicity) at room temperature. The electrochemical oxidation of [Li(glyme)(1)][TFSA] takes place at the electrode potential of ~5 V vs Li/Li(+), while the oxidation of solutions containing excess glyme molecules ([Li(glyme)(x)][TFSA], x > 1) occurs at around 4 V vs Li/Li(+). This enhancement of oxidative stability is due to the donation of lone pairs of ether oxygen atoms to the Li(+) cation, resulting in the highest occupied molecular orbital (HOMO) energy level lowering of a glyme molecule, which is confirmed by ab initio molecular orbital calculations. The solvation state of a Li(+) cation and ion conduction mechanism in the [Li(glyme)(x)][TFSA] solutions is elucidated by means of nuclear magnetic resonance (NMR) and electrochemical methods. The experimental results strongly suggest that Li(+) cation conduction in the equimolar complex takes place by the migration of [Li(glyme)(1)](+) cations, whereas the ligand exchange mechanism is overlapped when interfacial electrochemical reactions of [Li(glyme)(1)](+) cations occur. The ligand exchange conduction mode is typically seen in a lithium battery with a configuration of [Li anode|[Li(glyme)(1)][TFSA]|LiCoO(2) cathode] when the discharge reaction of a LiCoO(2) cathode, that is, desolvation of [Li(glyme)(1)](+) and insertion of the resultant Li(+) into the cathode, occurs at the electrode-electrolyte interface. The battery can be operated for more than 200 charge-discharge cycles in the cell voltage range of 3.0-4.2 V, regardless of the use of ether-based electrolyte, because the ligand exchange rate is much faster than the electrode reaction rate.

Journal ArticleDOI
19 Sep 2011-PLOS ONE
TL;DR: A recently developed 3D convolution library is incorporated into ZDOCK, and the program is modified to dynamically orient the input proteins for more efficient convolution, resulting in an average of over 8.5-fold improvement in running time when tested on 176 cases in a newly released protein docking benchmark, as well as substantially less memory usage.
Abstract: Computational prediction of the 3D structures of molecular interactions is a challenging area, often requiring significant computational resources to produce structural predictions with atomic-level accuracy. This can be particularly burdensome when modeling large sets of interactions, macromolecular assemblies, or interactions between flexible proteins. We previously developed a protein docking program, ZDOCK, which uses a fast Fourier transform to perform a 3D search of the spatial degrees of freedom between two molecules. By utilizing a pairwise statistical potential in the ZDOCK scoring function, there were notable gains in docking accuracy over previous versions, but this improvement in accuracy came at a substantial computational cost. In this study, we incorporated a recently developed 3D convolution library into ZDOCK, and additionally modified ZDOCK to dynamically orient the input proteins for more efficient convolution. These modifications resulted in an average of over 8.5-fold improvement in running time when tested on 176 cases in a newly released protein docking benchmark, as well as substantially less memory usage, with no loss in docking accuracy. We also applied these improvements to a previous version of ZDOCK that uses a simpler non-pairwise atomic potential, yielding an average speed improvement of over 5-fold on the docking benchmark, while maintaining predictive success. This permits the utilization of ZDOCK for more intensive tasks such as docking flexible molecules and modeling of interactomes, and can be run more readily by those with limited computational resources.

Journal ArticleDOI
TL;DR: As-prepared carbon dots exhibited visible, tunable and stable photoluminescence (PL), and XPS analysis showed that the increased oxygen concentration might be concerned with the origin of PL.

Journal ArticleDOI
TL;DR: A part of the adducts can still function as effective Lewis acid sites, catalyzing the allylation of benzaldehyde with tetraallyl tin and the conversion of glucose into 5-(hydroxymethyl)furfural in water.
Abstract: Niobic acid, Nb(2)O(5)·nH(2)O, has been studied as a heterogeneous Lewis acid catalyst. NbO(4) tetrahedra, Lewis acid sites, on Nb(2)O(5)·nH(2)O surface immediately form NbO(4)-H(2)O adducts in the presence of water. However, a part of the adducts can still function as effective Lewis acid sites, catalyzing the allylation of benzaldehyde with tetraallyl tin and the conversion of glucose into 5-(hydroxymethyl)furfural in water.

Journal ArticleDOI
TL;DR: In this paper, a review of the recent developments in the field of research for new catalysts for glycerol is presented, which highlights the role of reaction conditions as well as the possible transport limitations in this tri-phasic system.

Proceedings ArticleDOI
11 Dec 2011
TL;DR: This paper discusses three causes of unfairness in machine learning and proposes a regularization approach that is applicable to any prediction algorithm with probabilistic discriminative models and applies it to logistic regression to empirically show its effectiveness and efficiency.
Abstract: With the spread of data mining technologies and the accumulation of social data, such technologies and data are being used for determinations that seriously affect people's lives. For example, credit scoring is frequently determined based on the records of past credit data together with statistical prediction techniques. Needless to say, such determinations must be socially and legally fair from a viewpoint of social responsibility, namely, it must be unbiased and nondiscriminatory in sensitive features, such as race, gender, religion, and so on. Several researchers have recently begun to attempt the development of analysis techniques that are aware of social fairness or discrimination. They have shown that simply avoiding the use of sensitive features is insufficient for eliminating biases in determinations, due to the indirect influence of sensitive information. From a privacy-preserving viewpoint, this can be interpreted as hiding sensitive information when classification results are observed. In this paper, we first discuss three causes of unfairness in machine learning. We then propose a regularization approach that is applicable to any prediction algorithm with probabilistic discriminative models. We further apply this approach to logistic regression and empirically show its effectiveness and efficiency.

Journal ArticleDOI
TL;DR: A related phenomenon was proposed 40 years ago in which it is the ions in the crystal rather than the electrons that mediate the interaction as mentioned in this paper, which is known as ionic Raman scattering.
Abstract: Light can interact with the electrons in a crystalline solid, which in turn generates lattice vibrations or phonons. A related phenomenon was proposed 40 years ago in which it is the ions in the crystal rather than the electrons that mediate the interaction. This effect, known as ionic Raman scattering, is now observed experimentally.

Book ChapterDOI
06 Mar 2011
TL;DR: This paper proposes the first key-policy attribute-based encryption schemes allowing for non-monotonic access structures (i.e., that may contain negated attributes) and with constant ciphertext size and describes a new efficient identity-based revocation mechanism that gives rise to the first truly expressive KP-ABE realization with constant-size ciphertexts.
Abstract: Attribute-based encryption (ABE), as introduced by Sahai and Waters, allows for fine-grained access control on encrypted data. In its key-policy flavor, the primitive enables senders to encrypt messages under a set of attributes and private keys are associated with access structures that specify which ciphertexts the key holder will be allowed to decrypt. In most ABE systems, the ciphertext size grows linearly with the number of ciphertext attributes and the only known exceptions only support restricted forms of threshold access policies. This paper proposes the first key-policy attribute-based encryption (KP-ABE) schemes allowing for non-monotonic access structures (i.e., that may contain negated attributes) and with constant ciphertext size. Towards achieving this goal, we first show that a certain class of identity-based broadcast encryption schemes generically yields monotonic KPABE systems in the selective set model. We then describe a new efficient identity-based revocation mechanism that, when combined with a particular instantiation of our general monotonic construction, gives rise to the first truly expressive KP-ABE realization with constant-size ciphertexts. The downside of these new constructions is that private keys have quadratic size in the number of attributes. On the other hand, they reduce the number of pairing evaluations to a constant, which appears to be a unique feature among expressive KP-ABE schemes.

Journal ArticleDOI
25 Mar 2011-ACS Nano
TL;DR: In this paper, metal-free graphene nanosheets (GNSs) were examined for use as air electrodes in a Li-air battery with a hybrid electrolyte, and the GNSs showed a high discharge voltage that was near that of the 20 wt % Pt/carbon black.
Abstract: Metal-free graphene nanosheets (GNSs) were examined for use as air electrodes in a Li-air battery with a hybrid electrolyte. At 0.5 mA cm(-1), the GNSs showed a high discharge voltage that was near that of the 20 wt % Pt/carbon black. This was ascribed to the presence of sp(3) bonding associated with edge and defect sites in GNSs. Moreover, heat-treated GNSs not only provided a similar catalytic activity in reducing oxygen in the air, but also showed a much more-stable cycling performance than GNSs when used in a rechargeable Li-air battery. This improvement resulted from removal of adsorbed functional groups and from crystallization of the GNS surface into a graphitic structure on heat treatment.

Journal ArticleDOI
09 Jun 2011-Nature
TL;DR: DNA microarray analyses show that Glis1 effectively promotes the direct reprogramming of somatic cells during iPSC generation, including Myc, Nanog, Lin28, Wnt, Essrb and the mesenchymal–epithelial transition.
Abstract: Reprogramming of differentiated somatic cells to induced pluripotent stem (iPS) cells by exogenous expression of key transcription factors (Oct4, Sox2, Klf4 and c-Myc) has potential therapeutic applications. c-Myc enhances the efficiency of reprogramming, but the safety of using this oncogene has long been a concern. Now, Shinya Yamanaka and colleagues have found that the transcription factor Glis1 effectively and specifically promotes reprogramming of human and mouse somatic cells to iPS cells. Glis1 is highly enriched in unfertilized eggs and one-cell-stage embryos, and might be a link between reprogramming during iPS cell generation and after nuclear transfer into zygotes. Induced pluripotent stem cells (iPSCs) are generated from somatic cells by the transgenic expression of three transcription factors collectively called OSK: Oct3/4 (also called Pou5f1), Sox2 and Klf41. However, the conversion to iPSCs is inefficient. The proto-oncogene Myc enhances the efficiency of iPSC generation by OSK but it also increases the tumorigenicity of the resulting iPSCs2. Here we show that the Gli-like transcription factor Glis1 (Glis family zinc finger 1) markedly enhances the generation of iPSCs from both mouse and human fibroblasts when it is expressed together with OSK. Mouse iPSCs generated using this combination of transcription factors can form germline-competent chimaeras. Glis1 is enriched in unfertilized oocytes and in embryos at the one-cell stage. DNA microarray analyses show that Glis1 promotes multiple pro-reprogramming pathways, including Myc, Nanog, Lin28, Wnt, Essrb and the mesenchymal–epithelial transition. These results therefore show that Glis1 effectively promotes the direct reprogramming of somatic cells during iPSC generation.


Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the recent developments of heterometallic NPs for improved catalytic performance, including the preparation strategies for bimetallic core-shell NPs.
Abstract: Heterometallic nanoparticles (NPs) have been emerging as a type of important catalyst. Bimetallic NPs with alloyed and core–shell structures have higher activities than monometallic counterparts in catalysis due to the synergistic effects between the two metals. Compared to the straightforward synthesis of bimetallic alloy NPs, the preparation strategies for bimetallic core–shell NPs are flexible and diversified. In addition, synergistic catalysis over trimetallic and multimetallic NPs has also received considerable interest in recent years. In this feature article, we provide an overview of the recent developments of heterometallic NPs for improved catalytic performance.

Journal ArticleDOI
TL;DR: In this paper, the authors synthesized gold clusters with atomically controlled sizes on hydroxyapatite (HAP) and studied the catalysis for aerobic oxidation of cyclohexane.
Abstract: In this work, we synthesized gold clusters, Aun (n = 10, 18, 25, 39), with atomically controlled sizes on hydroxyapatite (HAP) and studied the catalysis for aerobic oxidation of cyclohexane. These Aun/HAP catalysts could efficiently oxidize cyclohexane to cyclohexanol and cyclohexanone. The turnover frequency monotonically increased with an increase in the size, reaching values as high as 18 500 h−1 Au atom−1 at n = 39, and thereafter decreased with a further increase in n up to n ∼ 85. This finding provides a fundamental insight into size-specific catalysis of gold in the cluster regime (diameter < 2 nm) and a guiding principle for rational design of Au cluster-based catalysts.

Journal ArticleDOI
07 Sep 2011-PLOS ONE
TL;DR: It is suggested that PFAA profiling has great potential for improving cancer screening and diagnosis and understanding disease pathogenesis, which involves a relatively simple plasma assay and imposes a lower physical burden on subjects when compared to existing screening methods.
Abstract: Background Recently, rapid advances have been made in metabolomics-based, easy-to-use early cancer detection methods using blood samples Among metabolites, profiling of plasma free amino acids (PFAAs) is a promising approach because PFAAs link all organ systems and have important roles in metabolism Furthermore, PFAA profiles are known to be influenced by specific diseases, including cancers Therefore, the purpose of the present study was to determine the characteristics of the PFAA profiles in cancer patients and the possibility of using this information for early detection Methods and Findings Plasma samples were collected from approximately 200 patients from multiple institutes, each diagnosed with one of the following five types of cancer: lung, gastric, colorectal, breast, or prostate cancer Patients were compared to gender- and age- matched controls also used in this study The PFAA levels were measured using high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)–mass spectrometry (MS) Univariate analysis revealed significant differences in the PFAA profiles between the controls and the patients with any of the five types of cancer listed above, even those with asymptomatic early-stage disease Furthermore, multivariate analysis clearly discriminated the cancer patients from the controls in terms of the area under the receiver-operator characteristics curve (AUC of ROC >075 for each cancer), regardless of cancer stage Because this study was designed as case-control study, further investigations, including model construction and validation using cohorts with larger sample sizes, are necessary to determine the usefulness of PFAA profiling Conclusions These findings suggest that PFAA profiling has great potential for improving cancer screening and diagnosis and understanding disease pathogenesis PFAA profiles can also be used to determine various disease diagnoses from a single blood sample, which involves a relatively simple plasma assay and imposes a lower physical burden on subjects when compared to existing screening methods

Journal ArticleDOI
TL;DR: It is suggested that a major part of the task-related changes in the oxyHb concentration in the forehead is due to task- relatedChanges in the skin blood flow, which is under different autonomic control than heart rate.