scispace - formally typeset
Search or ask a question

Showing papers by "National Institute of Advanced Industrial Science and Technology published in 2012"


Journal ArticleDOI
02 Nov 2012-Science
TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Abstract: The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

9,158 citations


Journal ArticleDOI
25 May 2012-Science
TL;DR: A strategy to expand the pore aperture of metal-organic frameworks (MOFs) into a previously unattained size regime (>32 angstroms) is reported, as evidenced by their permanent porosity and high thermal stability (up to 300°C).
Abstract: We report a strategy to expand the pore aperture of metal-organic frameworks (MOFs) into a previously unattained size regime (>32 angstroms). Specifically, the systematic expansion of a well-known MOF structure, MOF-74, from its original link of one phenylene ring (I) to two, three, four, five, six, seven, nine, and eleven (II to XI, respectively), afforded an isoreticular series of MOF-74 structures (termed IRMOF-74-I to XI) with pore apertures ranging from 14 to 98 angstroms. All members of this series have noninterpenetrating structures and exhibit robust architectures, as evidenced by their permanent porosity and high thermal stability (up to 300°C). The pore apertures of an oligoethylene glycol–functionalized IRMOF-74-VII and IRMOF-74-IX are large enough for natural proteins to enter the pores.

1,637 citations



Journal ArticleDOI
TL;DR: Fragmentation Methods: A Route to Accurate Calculations on Large Systems Mark S. Gordon,* Dmitri G. Fedorov, Spencer R. Pruitt, and Lyudmila V. Slipchenko.
Abstract: Fragmentation Methods: A Route to Accurate Calculations on Large Systems Mark S. Gordon,* Dmitri G. Fedorov, Spencer R. Pruitt, and Lyudmila V. Slipchenko Department of Chemistry and Ames Laboratory, Iowa State University, Ames Iowa 50011, United States Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States

938 citations


Journal ArticleDOI
TL;DR: It is demonstrated that voltage-controlled domain configurations in ferroelectric tunnel barriers yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed.
Abstract: Memristors are devices whose dynamic properties are of interest because they can mimic the operation of biological synapses. The demonstration that ferroelectric domains in tunnel junctions behave like memristors suggests new approaches for designing neuromorphic circuits.

906 citations


Journal ArticleDOI
TL;DR: A systematic study of PMMA decomposition on graphene and of its impact on graphene's intrinsic properties using transmission electron microscopy (TEM) in combination with Raman spectroscopy is reported.
Abstract: Surface contamination by polymer residues has long been a critical problem in probing graphene’s intrinsic properties and in using graphene for unique applications in surface chemistry, biotechnology, and ultrahigh speed electronics. Poly(methyl methacrylate) (PMMA) is a macromolecule commonly used for graphene transfer and device processing, leaving a thin layer of residue to be empirically cleaned by annealing. Here we report on a systematic study of PMMA decomposition on graphene and of its impact on graphene’s intrinsic properties using transmission electron microscopy (TEM) in combination with Raman spectroscopy. TEM images revealed that the physisorbed PMMA proceeds in two steps of weight loss in annealing and cannot be removed entirely at a graphene susceptible temperature before breaking. Raman analysis shows a remarkable blue-shift of the 2D mode after annealing, implying an anneal-induced band structure modulation in graphene with defects. Calculations using density functional theory show that l...

868 citations


Journal ArticleDOI
TL;DR: The recent development of carbon coating techniques in lithium-ion batteries is discussed with detailed examples of typical cathode and anode materials and the limitation of current technology and future perspective of the new concept of "hybrid coating" are pointed out.

841 citations


Journal ArticleDOI
TL;DR: The JDS extensively evaluated the usefulness and feasibility of more extended use of HbA1c in the diagnosis of diabetes based on Japanese epidemiological data, and then the ‘Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus’ was published in the Journal of Diabetes Investigation5 and Diabetology International.
Abstract: In 1999, the Japan Diabetes Society (JDS) launched the previous version of the diagnostic criteria of diabetes mellitus, in which JDS took initiative in adopting glycated hemoglobin (HbA1c) as an adjunct to the diagnosis of diabetes. In contrast, in 2009 the International Expert Committee composed of the members of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) manifested the recommendation regarding the use of HbA1c in diagnosing diabetes mellitus as an alternative to glucose measurements based on the updated evidence showing that HbA1c has several advantages as a marker of chronic hyperglycemia2–4. The JDS extensively evaluated the usefulness and feasibility of more extended use of HbA1c in the diagnosis of diabetes based on Japanese epidemiological data, and then the ‘Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus’ was published in the Journal of Diabetes Investigation5 and Diabetology International6. The new diagnostic criterion in Japan came into effect on 1 July 2010. According to the new version of the criteria, HbA1c (JDS) ≥6.1% is now considered to indicate a diabetic type, but the previous diagnosis criteria of high plasma glucose (PG) levels to diagnose diabetes mellitus also need to be confirmed. Those are as follows: (i) FPG ≥126 mg/dL (7.0 mmol/L); (ii) 2‐h PG ≥200 mg/dL (11.1 mmol/L) during an oral glucose tolerance test; or (iii) casual PG ≥200 mg/dL (11.1 mmol/L). If both PG criteria and HbA1c in patients have met the diabetic type, those patients are immediately diagnosed to have diabetes mellitus5,6.

825 citations


Journal ArticleDOI
TL;DR: The first reversible and recyclable hydrogen storage system that operates under mild conditions using CO2, formate and formic acid is shown, which is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption.
Abstract: Green plants convert CO2 to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO2 and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO2, formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong p-donor, and is rationalized by theoretical and experimental studies.

785 citations


Journal ArticleDOI
TL;DR: The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid- phase ammoniaborane thermal dehydrogenation, and gas-phase CO oxidation.
Abstract: Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal–organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a “double solvents” method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation.

762 citations


Journal ArticleDOI
TL;DR: A coherent precessional magnetization switching using electric field pulses in nanoscale magnetic cells with a few atomic FeCo (001) epitaxial layers adjacent to a MgO barrier is demonstrated and the realization of bistable toggle switching using the coherentPrecessions is demonstrated.
Abstract: The magnetization direction of a metallic magnet has generally been controlled by a magnetic field or by spin-current injection into nanosized magnetic cells. Both these methods use an electric current to control the magnetization direction; therefore, they are energy consuming. Magnetization control using an electric field is considered desirable because of its expected ultra-low power consumption and coherent behaviour. Previous experimental approaches towards achieving voltage control of magnetization switching have used single ferromagnetic layers with and without piezoelectric materials, ferromagnetic semiconductors, multiferroic materials, and their hybrid systems. However, the coherent control of magnetization using voltage signals has not thus far been realized. Also, bistable magnetization switching (which is essential in information storage) possesses intrinsic difficulties because an electric field does not break time-reversal symmetry. Here, we demonstrate a coherent precessional magnetization switching using electric field pulses in nanoscale magnetic cells with a few atomic FeCo (001) epitaxial layers adjacent to a MgO barrier. Furthermore, we demonstrate the realization of bistable toggle switching using the coherent precessions. The estimated power consumption for single switching in the ideal equivalent switching circuit can be of the order of 10(4)k(B)T, suggesting a reduction factor of 1/500 when compared with that of the spin-current-injection switching process.

Journal ArticleDOI
TL;DR: In this paper, the authors survey the research progress in hydrogen generation from liquid-phase chemical hydrogen storage materials and their regeneration, and present a review of these materials in hydrogen storage.
Abstract: In the search for future energy supplies, the application of hydrogen as an energy carrier is seen as a prospective issue. However, the implementation of a hydrogen economy is suffering from several unsolved problems. Particularly challenging is the storage of appropriate amounts of hydrogen. In this context one of the promising hydrogen storage techniques relies on liquid-phase chemical hydrogen storage materials, in particular, aqueous sodium borohydride, ammonia borane, hydrazine, hydrazine borane and formic acid. The use of these materials in hydrogen storage provides high gravimetric and volumetric hydrogen densities, low potential risk, and low capital investment because it is largely compatible with the current transport infrastructure. In this review, we survey the research progresses in hydrogen generation from these liquid-phase chemical hydrogen storage materials and their regeneration.

Book ChapterDOI
24 Sep 2012
TL;DR: A regularization approach is proposed that is applicable to any prediction algorithm with probabilistic discriminative models and applied to logistic regression and empirically show its effectiveness and efficiency.
Abstract: With the spread of data mining technologies and the accumulation of social data, such technologies and data are being used for determinations that seriously affect individuals' lives. For example, credit scoring is frequently determined based on the records of past credit data together with statistical prediction techniques. Needless to say, such determinations must be nondiscriminatory and fair in sensitive features, such as race, gender, religion, and so on. Several researchers have recently begun to attempt the development of analysis techniques that are aware of social fairness or discrimination. They have shown that simply avoiding the use of sensitive features is insufficient for eliminating biases in determinations, due to the indirect influence of sensitive information. In this paper, we first discuss three causes of unfairness in machine learning. We then propose a regularization approach that is applicable to any prediction algorithm with probabilistic discriminative models. We further apply this approach to logistic regression and empirically show its effectiveness and efficiency.

Journal ArticleDOI
26 Jul 2012-Nature
TL;DR: This work prepared metal–insulator–semiconductor field-effect transistors based on vanadium dioxide and found that electrostatic charging at a surface drives all the previously localized charge carriers in the bulk material into motion, leading to the emergence of a three-dimensional metallic ground state.
Abstract: In the classic transistor, the number of electric charge carriers--and thus the electrical conductivity--is precisely controlled by external voltage, providing electrical switching capability. This simple but powerful feature is essential for information processing technology, and also provides a platform for fundamental physics research. As the number of charges essentially determines the electronic phase of a condensed-matter system, transistor operation enables reversible and isothermal changes in the system's state, as successfully demonstrated in electric-field-induced ferromagnetism and superconductivity. However, this effect of the electric field is limited to a channel thickness of nanometres or less, owing to the presence of Thomas-Fermi screening. Here we show that this conventional picture does not apply to a class of materials characterized by inherent collective interactions between electrons and the crystal lattice. We prepared metal-insulator-semiconductor field-effect transistors based on vanadium dioxide--a strongly correlated material with a thermally driven, first-order metal-insulator transition well above room temperature--and found that electrostatic charging at a surface drives all the previously localized charge carriers in the bulk material into motion, leading to the emergence of a three-dimensional metallic ground state. This non-local switching of the electronic state is achieved by applying a voltage of only about one volt. In a voltage-sweep measurement, the first-order nature of the metal-insulator transition provides a non-volatile memory effect, which is operable at room temperature. Our results demonstrate a conceptually new field-effect device, extending the concept of electric-field control to macroscopic phase control.

Journal ArticleDOI
TL;DR: The finding suggests the possibility that the symbiont-mediated insecticide resistance may develop even in the absence of pest insects, quickly establish within a single insect generation, and potentially move around horizontally between different pest insects and other organisms.
Abstract: Development of insecticide resistance has been a serious concern worldwide, whose mechanisms have been attributed to evolutionary changes in pest insect genomes such as alteration of drug target sites, up-regulation of degrading enzymes, and enhancement of drug excretion. Here, we report a previously unknown mechanism of insecticide resistance: Infection with an insecticide-degrading bacterial symbiont immediately establishes insecticide resistance in pest insects. The bean bug Riptortus pedestris and allied stinkbugs harbor mutualistic gut symbiotic bacteria of the genus Burkholderia, which are acquired by nymphal insects from environmental soil every generation. In agricultural fields, fenitrothion-degrading Burkolderia strains are present at very low densities. We demonstrated that the fenitrothion-degrading Burkholderia strains establish a specific and beneficial symbiosis with the stinkbugs and confer a resistance of the host insects against fenitrothion. Experimental applications of fenitrothion to field soils drastically enriched fenitrothion-degrading bacteria from undetectable levels to >80% of total culturable bacterial counts in the field soils, and >90% of stinkbugs reared with the enriched soil established symbiosis with fenitrothion-degrading Burkholderia. In a Japanese island where fenitrothion has been constantly applied to sugarcane fields, we identified a stinkbug population wherein the insects live on sugarcane and ≈8% of them host fenitrothion-degrading Burkholderia. Our finding suggests the possibility that the symbiont-mediated insecticide resistance may develop even in the absence of pest insects, quickly establish within a single insect generation, and potentially move around horizontally between different pest insects and other organisms.

Journal ArticleDOI
TL;DR: Porous ceramics are now expected to be used for a wide variety of industrial applications from filtration, absorption, catalysts, and catalyst supports to lightweight structural components as mentioned in this paper.
Abstract: Porous ceramics are now expected to be used for a wide variety of industrial applications from filtration, absorption, catalysts and catalyst supports to lightweight structural components. During the last decade, tremendous efforts have been devoted for the researches on innovative processing technologies of porous ceramics, resulting in better control of the porous structures and substantial improvements of the properties. This article intends to review these recent progresses of porous ceramics. Because of a vast amount of research works reported in this field these days, the review mainly focuses on macro-porous ceramics whose pore size is larger than 50 nm. Followed by giving a general classification of porous ceramics, a number of innovative processing routes developed for critical control of pores are described, along with some important properties. The processes are divided into four categories including (i) partial sintering, (ii) sacrificial fugitives, (iii) replica templates and (iv) dir...

Journal ArticleDOI
TL;DR: Mohamad Hmadeh et al. as discussed by the authors have proposed a method to improve the performance of nanotube research through mentoring, which has been shown to yield promising results in the field of Reticular Chemistry.
Abstract: Mohamad Hmadeh,†,‡ Zheng Lu,†,‡ Zheng Liu, Felipe Gandara,†,‡ Hiroyasu Furukawa,†,‡ Shun Wan,†,‡ Veronica Augustyn, Rui Chang, Lei Liao,‡ Fei Zhou, Emilie Perre, Vidvuds Ozolins, Kazu Suenaga, Xiangfeng Duan,‡ Bruce Dunn, Yasuaki Yamamto, Osamu Terasaki, and Omar M. Yaghi*,†,‡,#,¶ †Center for Reticular Chemistry, Center for Global Mentoring, ‡Department of Chemistry and Biochemistry, and Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States Nanotube Research Center, AIST, Tsukuba 305-8565, Japan SMBU, JEOL Ltd., Akishima, Tokyo 196-8558, Japan Department of Materials and Environmental Chemistry and EXSELENT, Stockholm University, Stockholm, Sweden Graduate School of EEWS (WCU), Korea

Journal ArticleDOI
TL;DR: In this paper, a new facile route to fabricate N-doped graphene-SnO2 sandwich papers is developed, where the 7,7,8,8-tetracyanoquinodimethane anion plays a key role for the formation of such structures.
Abstract: A new facile route to fabricate N-doped graphene-SnO2 sandwich papers is developed. The 7,7,8,8-tetracyanoquinodimethane anion (TCNQ−) plays a key role for the formation of such structures as it acts as both the nitrogen source and complexing agent. If used in lithium-ion batteries (LIBs), the material exhibits a large capacity, high rate capability, and excellent cycling stability. The superior electrochemical performance of this novel material is the result from its unique features: excellent electronic conductivity related to the sandwich structure, short transportation length for both lithium ions and electrons, and elastomeric space to accommodate volume changes upon Li insertion/extraction.


Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the major developments in the field of LiMO2 cathode materials and highlight the changes in structure during Li extraction and the phase compatibility of Li mixed metal oxides.
Abstract: Development and discovery of cathode materials with superior performance seem to be tremendous challenges for Li-ion battery scientists. Since the topotactic reaction was first demonstrated in the 1970s, layered Li transition metal oxides (LiMO2, M = Co, Ni, Mn) have been a shining star throughout the research and innovation in intercalation materials due to their appealing merits. Generally the basic LiMO2 with a single kind of transition metal ion suffers from safety concerns and structural instability and can not support high energy Li-ion batteries. Nowadays, Li-stoichiometric mixed metal oxides and Li-excess Mn-based oxides have been considered as the most promising families of cathode materials for large-scale Li-ion batteries with high energy density used for transportation. In the present paper, with the help of a phase diagram tetrahedron, we provide an overview of the major developments in the field of LiMO2 cathode materials. The changes in structure during Li extraction and the phase compatibility of Li mixed metal oxides are highlighted. The latest progress in the research of Li-excess Mn-based oxides is also included.

Journal ArticleDOI
TL;DR: In this paper, a new type of BiS 2 -based layered superconductor LaO 1- x F x BiS2, with a T c as high as 10.6 K, was reported.
Abstract: Layered superconductors have provided some interesting fields in condensed matter physics owing to the low dimensionality of their electronic states. For example, the high- T c (high transition temperature) cuprates and the Fe-based superconductors possess a layered crystal structure composed of a stacking of spacer (blocking) layers and conduction (superconducting) layers, CuO 2 planes or Fe-Anion layers. The spacer layers provide carriers to the conduction layers and induce exotic superconductivity. Recently, we have reported superconductivity in the novel BiS 2 -based layered compound Bi 4 O 4 S 3 . It was found that superconductivity of Bi 4 O 4 S 3 originates from the BiS 2 layers. The crystal structure is composed of a stacking of BiS 2 superconducting layers and the spacer layers, which resembles those of high- T c cuprate and the Fe-based superconductors. Here we report a discovery of a new type of BiS 2 -based layered superconductor LaO 1- x F x BiS 2 , with a T c as high as 10.6 K.

Journal ArticleDOI
20 Jan 2012-Science
TL;DR: An aberration-corrected, environmental transmission electron microscopy method was applied to show that adsorbed carbon monoxide molecules caused the 100 facets of a gold nanoparticle to reconstruct during CO oxidation at room temperature, and the energetic favorability of this reconstructed structure was confirmed.
Abstract: Understanding how molecules can restructure the surfaces of heterogeneous catalysts under reaction conditions requires methods that can visualize atoms in real space and time. We applied a newly developed aberration-corrected environmental transmission electron microscopy to show that adsorbed carbon monoxide (CO) molecules caused the {100} facets of a gold nanoparticle to reconstruct during CO oxidation at room temperature. The CO molecules adsorbed at the on-top sites of gold atoms in the reconstructed surface, and the energetic favorability of this reconstructed structure was confirmed by ab initio calculations and image simulations. This atomic-scale visualizing method can be applied to help elucidate reaction mechanisms in heterogeneous catalysis.

Journal ArticleDOI
TL;DR: In this paper, superconductivity in a new bismuth-oxysulfide compound BiS${}{4}$O${}_{ 4}$S${]_{ 3}$ was shown.
Abstract: Exotic superconductivity has often been discovered in materials with a layered (two-dimensional) crystal structure. The low dimensionality can affect the electronic structure and can realize high transition temperatures (${T}_{\mathrm{c}}$) and/or unconventional superconductivity mechanisms. We show superconductivity in a new bismuth-oxysulfide compound Bi${}_{4}$O${}_{4}$S${}_{3}$. Crystal structure analysis indicates that this superconductor has a layered structure composed of a stacking of spacer layers and BiS${}_{2}$ layers. Band calculation suggests that the Fermi level for Bi${}_{4}$O${}_{4}$S${}_{3}$ is just on the peak position of the partial density of states of the Bi 6$p$ orbital within the BiS${}_{2}$ layer. The BiS${}_{2}$ layer will be a basic structure which provides another universality class for a layered superconducting family, and this opens up a new field in the physics and chemistry of low-dimensional superconductors.

Journal ArticleDOI
TL;DR: In vitro binding assays showed that HNRNPK competed with CPSF6 for binding to NUDT21, which was the underlying mechanism to arrest CFIm binding by HNR NPK, which led to the preferential accumulation of NEAT1_2 and initiated paraspeckle construction with multiple PSPs.
Abstract: Paraspeckles are unique subnuclear structures built around a specific long noncoding RNA, NEAT1, which is comprised of two isoforms produced by alternative 3′-end processing (NEAT1_1 and NEAT1_2). To address the precise molecular processes that lead to paraspeckle formation, we identified 35 paraspeckle proteins (PSPs), mainly by colocalization screening with a fluorescent protein-tagged full-length cDNA library. Most of the newly identified PSPs possessed various putative RNA-binding domains. Subsequent RNAi analyses identified seven essential PSPs for paraspeckle formation. One of the essential PSPs, HNRNPK, appeared to affect the production of the essential NEAT1_2 isoform by negatively regulating the 3′-end polyadenylation of the NEAT1_1 isoform. An in vitro 3′-end processing assay revealed that HNRNPK arrested binding of the CPSF6–NUDT21 (CFIm) complex in the vicinity of the alternative polyadenylation site of NEAT1_1. In vitro binding assays showed that HNRNPK competed with CPSF6 for binding to NUDT21, which was the underlying mechanism to arrest CFIm binding by HNRNPK. This HNRNPK function led to the preferential accumulation of NEAT1_2 and initiated paraspeckle construction with multiple PSPs.

Journal ArticleDOI
TL;DR: In this article, a strategy to better understand forearcs and thus subduction initiation by studying ophiolites, which preserve the magmatic stratigraphy, as seen in the Izu-Bonin-Mariana forearc, was proposed.
Abstract: Articulating a comprehensive plate-tectonic theory requires understanding how new subduction zones form (subduction initiation). Because subduction initiation is a tectonomagmatic singularity with few active examples, reconstructing subduction initiation is challenging. The lithosphere of many intra-oceanic forearcs preserves a high-fidelity magmatic and stratigraphic record of subduction initiation. We have heretofore been remarkably ignorant of this record, because the “naked forearcs” that expose subduction initiation crustal sections are distant from continents and lie in the deep trenches, and it is difficult and expensive to study and sample this record via dredging, diving, and drilling. Studies of the Izu-Bonin-Mariana convergent margin indicate that subduction initiation there was accompanied by seafloor spreading in what ultimately became the forearc of the new convergent margin. Izu-Bonin-Mariana subduction initiation encompassed ∼7 m.y. for the complete transition from initial seafloor spreading and eruption of voluminous mid-ocean-ridge basalts (forearc basalts) to normal arc volcanism, perhaps consistent with how long it might take for slowly subsiding lithosphere to sink ∼100 km deep and for mantle motions to evolve from upwelling beneath the infant arc to downwelling beneath the magmatic front. Many ophiolites have chemical features that indicate formation above a convergent plate margin, and most of those formed in forearcs, where they were well positioned to be tectonically emplaced on land when buoyant crust jammed the associated subduction zone. We propose a strategy to better understand forearcs and thus subduction initiation by studying ophiolites, which preserve the magmatic stratigraphy, as seen in the Izu-Bonin-Mariana forearc; we call these “subduction initiation rule” ophiolites. This understanding opens the door for on-land geologists to contribute fundamentally to understanding subduction initiation.

Journal ArticleDOI
02 Aug 2012-ACS Nano
TL;DR: In this article, the authors demonstrate the possibility of quantifying the Raman intensities for both specimen and substrate layers in a common stacked experimental configuration and propose a general and rapid thickness identification technique for atomic-scale layers on dielectric substrates.
Abstract: We demonstrate the possibility in quantifying the Raman intensities for both specimen and substrate layers in a common stacked experimental configuration and, consequently, propose a general and rapid thickness identification technique for atomic-scale layers on dielectric substrates. Unprecedentedly wide-range Raman data for atomically flat MoS2 flakes are collected to compare with theoretical models. We reveal that all intensity features can be accurately captured when including optical interference effect. Surprisingly, we find that even freely suspended chalcogenide few-layer flakes have a stronger Raman response than that from the bulk phase. Importantly, despite the oscillating intensity of specimen spectrum versus thickness, the substrate weighted spectral intensity becomes monotonic. Combined with its sensitivity to specimen thickness, we suggest this quantity can be used to rapidly determine the accurate thickness for atomic layers.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate single-photon generation by electrical excitation from a single neutral nitrogen-vacancy center in a p-i-n diamond diode.
Abstract: Researchers demonstrate single-photon generation by electrical excitation from a single neutral nitrogen–vacancy centre in a p–i–n diamond diode. The photon generation rate at room temperature was 4 × 104 photons s−1 for an injection current of 14 mA. The researchers also investigated the carrier recombination dynamics of the device.

Journal ArticleDOI
30 Aug 2012-Nature
TL;DR: A carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean is presented and large superimposed fluctuations in carbonate compensation depth are found during the middle and late Eocene.
Abstract: Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.

Journal ArticleDOI
TL;DR: The fragment molecular orbital method makes possible nearly linear scaling calculations of large molecular systems, such as water clusters, proteins and DNA, and has been widely used in biochemical applications involving protein-ligand binding and drug design.
Abstract: The fragment molecular orbital (FMO) method makes possible nearly linear scaling calculations of large molecular systems, such as water clusters, proteins and DNA. In particular, FMO has been widely used in biochemical applications involving protein–ligand binding and drug design. The method has been efficiently parallelized suitable for petascale computing. Many commonly used wave functions and solvent models have been interfaced with FMO. We review the historical background of FMO, and summarize its method development and applications.

Journal ArticleDOI
TL;DR: Gold nanoparticles deposited on nanocrystalline magnesium oxide is a very efficient catalyst for the reduction of nitro-arenes in aqueous medium at room temperature as discussed by the authors, and the reaction kinetics of reduction of 4-nitrophenol to 4-aminophenol has been studied by UV-visible spectrophotometry, and its apparent rate constant has been determined and compared with those of other supported gold catalysts.