scispace - formally typeset
Search or ask a question
Institution

National Institute of Advanced Industrial Science and Technology

GovernmentTsukuba, Ibaraki, Japan
About: National Institute of Advanced Industrial Science and Technology is a government organization based out in Tsukuba, Ibaraki, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 22114 authors who have published 65856 publications receiving 1669827 citations. The organization is also known as: Sangyō Gijutsu Sōgō Kenkyū-sho.
Topics: Catalysis, Thin film, Carbon nanotube, Hydrogen, Laser


Papers
More filters
Journal ArticleDOI
TL;DR: The intensity of the defect emission caused by oxygen vacancies of ZnO rapidly decreased, while the exciton emission intensity increased, which indicates that anionic oxygen in the amphoteric surfactant molecules effectively occupied the oxygen vacancy sites at theZnO nanoparticle surface due to charge matching with the positively charged ZNO nanoparticles.
Abstract: ZnO nanoparticles were prepared by laser ablation of a zinc metal plate in a liquid environment using different surfactant (cationic, anionic, amphoteric, and nonionic) solutions. The nanoparticles were obtained in deionized water and in all surfactant solutions except the anionic surfactant solution. The average particle size and the standard deviation of particle size decreased with increasing amphoteric and nonionic surfactant concentrations. With the increase of the amphoteric surfactant concentration, the intensity of the defect emission caused by oxygen vacancies of ZnO rapidly decreased, while the exciton emission intensity increased. This indicates that anionic oxygen in the amphoteric surfactant molecules effectively occupied the oxygen vacancy sites at the ZnO nanoparticle surface due to charge matching with the positively charged ZnO nanoparticles.

241 citations

Journal ArticleDOI
TL;DR: A wide range of highly active metal NP catalysts for efficient H2 generation from FA under mild conditions were developed, and the size and composition of the NPs can be controlled for the enhancement of catalytic performance for the FA dehydrogenation.
Abstract: ConspectusTo meet the ever-increasing energy demand, the development of effective, renewable, and environmentally friendly sources of alternative energy is imperative Hydrogen (H2) is a renewable, clean energy carrier, which exhibits a threefold energy density compared to gasoline; H2 is considered one of the most promising alternative energy carriers for enabling a secure, clean energy future However, the realization of a hydrogen economy is restricted by several unresolved issues Particularly, one of the most difficult challenges is the development of a safe, efficient hydrogen storage and delivery system To this end, hydrogen storage techniques based on liquid-phase chemical hydrogen storage materials have become an attractive choiceFormic acid (FA) with a high volumetric capacity of 53 g H2/L demonstrates promise as a safe, convenient liquid hydrogen carrier However, generating H2 from FA in a controlled manner at ambient temperature is still challenging, which primarily depends on the catalyst

241 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the inherent optical tunability of single-walled carbon nanotubes, present in their structural diversity, allows them to generate room-temperature single-photon emission spanning the entire telecom band.
Abstract: Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, present in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Single-photon emission deep into the centre of the telecom C band (1.55 µm) is achieved at the largest nanotube diameters we explore (0.936 nm). Single-photon emission with 99% purity is generated from sp3 defects in carbon nanotubes (CNTs) by optical excitation at room temperature. By increasing the CNT diameter from 0.76 nm to 0.94 nm, the emission wavelength can be changed from 1,100 nm to 1,600 nm.

240 citations

Journal ArticleDOI
TL;DR: The improved performance of Ru/ITO can be attributed to the superior catalytic activity of Ru nanoparticles toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) and the absence of carbon that has been reported to react with Li2O2 to form Li2CO3.
Abstract: Ru nanoparticles deposited on a conductive support indium tin oxide (Ru/ITO) were applied as a carbon-free cathode in a nonaqueous Li-O2 battery. The Li-O2 battery with Ru/ITO showed much lower charging overpotentials and better cycling performance at 0.15 mA/cm(2) than those with Super P (SP) and SP loaded with Ru nanoparticles (Ru/SP) as the cathodes. The carbon-free cathode Ru/ITO can effectively reduce formation of Li2CO3 or other Li carbonates in a discharging process, which cannot be completely decomposed upon charging, in comparison with the carbon based cathode. The improved performance of Ru/ITO can be attributed to the superior catalytic activity of Ru nanoparticles toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) and the absence of carbon that has been reported to react with Li2O2 to form Li2CO3.

240 citations

Journal ArticleDOI
TL;DR: Water-soluble chitosan (WSC)/heparin (CH) complex was prepared using WSC with wound healing ability and heparin with ability to attract or bind growth factor related to wound healing process to make effective wound healing accelerator.

240 citations


Authors

Showing all 22289 results

NameH-indexPapersCitations
Takeo Kanade147799103237
Ferenc A. Jolesz14363166198
Michele Parrinello13363794674
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Kurunthachalam Kannan12682059886
Shaobin Wang12687252463
Ajit Varki12454258772
Tao Zhang123277283866
Ramamoorthy Ramesh12264967418
Kazuhito Hashimoto12078161195
Katsuhiko Mikoshiba12086662394
Qiang Xu11758550151
Yoshinori Tokura11785870258
Network Information
Related Institutions (5)
Tohoku University
170.7K papers, 3.9M citations

93% related

University of Tokyo
337.5K papers, 10.1M citations

93% related

Osaka University
185.6K papers, 5.1M citations

93% related

Hokkaido University
115.4K papers, 2.6M citations

93% related

Nagoya University
128.2K papers, 3.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022265
20213,064
20203,389
20193,257
20183,181