scispace - formally typeset
Search or ask a question
Institution

National Institute of Advanced Industrial Science and Technology

GovernmentTsukuba, Ibaraki, Japan
About: National Institute of Advanced Industrial Science and Technology is a government organization based out in Tsukuba, Ibaraki, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 22114 authors who have published 65856 publications receiving 1669827 citations. The organization is also known as: Sangyō Gijutsu Sōgō Kenkyū-sho.
Topics: Catalysis, Thin film, Carbon nanotube, Hydrogen, Laser


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the PAN nonwovens possessed homogeneous pore size distribution with similar pore sizes to the conventional microporous membrane separator, and showed higher porosities, lower gurley values and better wettabilities than the conventional polyolefin microporic separator.

236 citations

Journal ArticleDOI
TL;DR: The dual diffusion model provides a quantitative account for both the behavior in a simple decision-making task as well as the patterns of activity in competing populations of neurons.
Abstract: Monkeys made saccades to one of two peripheral targets based on the brightness of a central stimulus. Task difficulty was manipulated by varying the ratio of stimulus black-and-white pixels. Correct response probability for two monkeys varied directly with difficulty. Deep layer SC neurons exhibited robust presaccadic activity the magnitude of which was unaffected by task difficulty when the stimulus specified a saccade toward a target within the neuron's response field. Activity after stimuli specifying saccades to targets outside the response field was affected by task difficulty, increasing as the task became more difficult. A quantitative model derived from studies of human decision-making was fit to the behavioral data. The model assumes that information from the stimulus drives two independent diffusion processes. Simulated paths from the model were compared with neuron activity, assuming that firing rate is linearly related to position in the accumulation process. The firing rate data show delayed availability of discriminative information for fast, intermediate, and slow decisions when activity is aligned on the stimulus and very small differences in discriminative information when aligned on the saccade. The model produces exactly these patterns of results. The accumulation process is highly variable, allowing the process both to make errors, as is the case for the behavioral performance, and also to account for the firing rate results. Thus the dual diffusion model provides a quantitative account for both the behavior in a simple decision-making task as well as the patterns of activity in competing populations of neurons.

236 citations

Journal ArticleDOI
TL;DR: Glycolipid type” BS are the most promising, due to high productivity from renewable resources and versatile interfacial and biochemical properties, and the cationic liposome bearing MELs has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells.
Abstract: Biosurfactants (BS) produced by a variety of microorganisms show unique properties (e.g. mild production conditions, multi-functionality, higher environmental compatibility) compared to their chemical counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in environmental protection and energy-saving technology as well. Among BS, “Glycolipid type” BS are the most promising, due to high productivity from renewable resources and versatile interfacial and biochemical properties. Mannosylerythritol lipids (MELs), which are glycolipid BS produced by yeast strains of the genus Pseudozyma, not only exhibit excellent surface activities but also self-assemble to form different lyotropic liquid crystalline phases such as sponge (L3), bicontinuous cubic (V2) or lammellar (Lα). They also show induction of cell-differentiation against human leukemia cells, and high binding affinity towards lectins and immunoglobulins. Recently, the cationic liposome bearing MELs has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BS should broaden the applications in new advanced technologies. The current status of R&D on glycolipid BS, especially their functions and potential applications, is discussed.

236 citations

Journal ArticleDOI
TL;DR: A novel polymer cathode material, namely poly(benzoquinonyl sulfide) (PBQS) is reported, for either rechargeable Li or Na battery, which shows a high energy density and demonstrates excellent long‐term cycling stability and superior rate capability in Li battery.
Abstract: In concern of resource sustainability and environmental friendliness, organic electrode materials for rechargeable batteries have attracted increasing attentions in recent years. However, for many researchers, the primary impression on organic cathode materials is the poor cycling stability and low energy density, mainly due to the unfavorable dissolution and low redox potential, respectively. Herein, a novel polymer cathode material, namely poly(benzoquinonyl sulfide) (PBQS) is reported, for either rechargeable Li or Na battery. Remarkably, PBQS shows a high energy density of 734 W h kg–1 (2.67 V × 275 mA h g–1) in Li battery, or 557 W h kg–1 (2.08 V × 268 mA h g–1) in Na battery, which exceeds those of most inorganic Li or Na intercalation cathodes. Moreover, PBQS also demonstrates excellent long-term cycling stability (1000 cycles, 86%) and superior rate capability (5000 mA g–1, 72%) in Li battery. Besides the exciting battery performance, investigations on the structure–property relationship between benzoquinone (BQ) and PBQS, and electrochemical behavior difference between Li–PBQS battery and Na–PBQS battery, also provide significant insights into developing better Li-organic and Na-organic batteries beyond conventional Li-ion batteries.

236 citations

Journal ArticleDOI
TL;DR: The hetero-interface along the [001]rh/[103]mon zone axis direction is demonstrated, indicating the two-phase nature of these lithium-rich cathode materials.
Abstract: About phase: The coexistence of rhombohedral LiTMO2 (TM=Ni, Co, or Mn) and monoclinic Li2MnO3-like structures inside Li1.2Mn0.567Ni0.166Co0.067O2 is revealed directly at atomic resolution. The hetero-interface along the [001]rh/[103]mon zone axis direction is demonstrated, indicating the two-phase nature of these lithium-rich cathode materials (green Li, blue Mn, red O, cyan TM).

236 citations


Authors

Showing all 22289 results

NameH-indexPapersCitations
Takeo Kanade147799103237
Ferenc A. Jolesz14363166198
Michele Parrinello13363794674
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Kurunthachalam Kannan12682059886
Shaobin Wang12687252463
Ajit Varki12454258772
Tao Zhang123277283866
Ramamoorthy Ramesh12264967418
Kazuhito Hashimoto12078161195
Katsuhiko Mikoshiba12086662394
Qiang Xu11758550151
Yoshinori Tokura11785870258
Network Information
Related Institutions (5)
Tohoku University
170.7K papers, 3.9M citations

93% related

University of Tokyo
337.5K papers, 10.1M citations

93% related

Osaka University
185.6K papers, 5.1M citations

93% related

Hokkaido University
115.4K papers, 2.6M citations

93% related

Nagoya University
128.2K papers, 3.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022265
20213,064
20203,389
20193,257
20183,181