scispace - formally typeset
Search or ask a question
Institution

National Institute of Advanced Industrial Science and Technology

GovernmentTsukuba, Ibaraki, Japan
About: National Institute of Advanced Industrial Science and Technology is a government organization based out in Tsukuba, Ibaraki, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 22114 authors who have published 65856 publications receiving 1669827 citations. The organization is also known as: Sangyō Gijutsu Sōgō Kenkyū-sho.
Topics: Catalysis, Thin film, Carbon nanotube, Hydrogen, Laser


Papers
More filters
Journal ArticleDOI
TL;DR: The semiclassical equation of motion for the wave packet of light is derived taking into account the Berry curvature in momentum-space, which leads to the shift of wave-packet motion perpendicular to the gradient of the dielectric constant, i.e., the polarization-dependent Hall effect of light.
Abstract: We derive the semiclassical equation of motion for the wave packet of light taking into account the Berry curvature in momentum-space. This equation naturally describes the interplay between orbital and spin angular momenta, i.e., the conservation of the total angular momentum of light. This leads to the shift of wave-packet motion perpendicular to the gradient of the dielectric constant, i.e., the polarization-dependent Hall effect of light. An enhancement of this effect in photonic crystals is also proposed.

868 citations

Journal ArticleDOI
TL;DR: The results of numerous studies show that LPO, and probably oxidative stress in general, may exert both deleterious and beneficial effects in vivo, and it appears difficult to regulate the formation of free radical-mediated LPO products.

867 citations

Journal ArticleDOI
TL;DR: An in situ polymerization restriction method is reported for the synthesis of a nano-sized LiFePO4/carbon composite with a core–shell structure from Fe salts, considered to be one of the most promising cathode materials for the next generation of lithium batteries.
Abstract: Nano-sized electrode materials for lithium-ion batteries have attracted much attention recently because their reduced dimensions enable much higher power. However, the large electrolyte/electrode interface arising from their size leads to more undesired reactions, which result in poor cycling performance. Moreover, some nano-sized cathode materials synthesized by low-temperature methods are poorly crystalline, which also reduces their electrochemical stability. The synthesis of highly crystalline nanomaterials completely coated with conductive carbon (or a carbon shell) would be an effective means of eliminating these problems. Such a synthesis is a significant challenge, however, as the highly crystalline structure and its subsequent coating with conductive carbon have to be achieved at high temperature, where larger crystallite sizes are almost inevitable. Olivine (LiFePO4) is considered to be one of the most promising cathode materials for the next generation of lithium batteries due to its low toxicity, low cost, and high safety. However, its power performance is greatly limited by slow diffusion of lithium ions across the two-phase boundary and/or low conductivity. Many efforts have been made over the past few years to improve the power performance of LiFePO4 by using low-temperature routes to obtain tailored particles or carbon painting to improve the conductivity of the solid phase. However, these previous studies have always focused on the “nano-size” or the “coating with conductive carbon” separately, rather than considering both of them together. Various low-temperature methods (synthesis temperature below 600 8C), such as lowtemperature ceramic routes or hydrothermal syntheses, have been developed to lower the particle size of LiFePO4, although none of them have been able to ensure the conductivity of the carbon coating. Furthermore, some lowtemperature routes are not able to produce the required highly crystalline olivine structure, thus reducing the electrochemical stability of LiFePO4. The high surface area arising from the nano-size of the products also greatly increases the undesirable electrode/electrolyte reactions, which leads to a poor cycling performance From a review of previous studies of nano-sized LiFePO4 (less than 100 nm), we can see that a “perfect” cycle-life (> 200 cycles) at high charge/ discharge depth (90%) is almost unheard of. Approaches based on the thermal decomposition of carbon-containing precursors have also been widely studied for the preparation of carbon-coated LiFePO4 particles. [16–23] However, these methods generally involve a high-temperature treatment, during which an increase in crystallite size is inevitable, to ensure the conductivity of the resulting carbon materials. Accordingly, those approaches based on the thermal decomposition of carbon-containing precursors can only produce LiFePO4 particles with a partial coating of carbon (Figure 1a). As shown in Figure 1a, during the intercalation process, the electrons cannot reach all the positions where Li ion intercalation takes place, thus resulting in polarization of the electrode. In view of the one-dimensional Li ion mobility in the framework, full coating with carbon, which ensures LiFePO4 particles get electrons from all directions, could further alleviate this polarization phenomenon. According to our analysis of previous studies, the ideal structure for high-performance LiFePO4 should contain nano-size particles completely coated with conductive carbon (Figure 1b). It should be noted that many previous studies involving the synthesis of nano-sized LiFePO4 employ Fe 2+ salts as precursors. 11–13,21] However, these salts are much more expensive and unstable than Fe salts, therefore the synthesis of a nano-sized LiFePO4/carbon composite with a core–shell structure from Fe salts would be of great interest. Herein we report an in situ polymerization restriction method for the synthesis of a LiFePO4/carbon composite formed from a highly crystalline LiFePO4 core with a size of about 20–40 nm and a semi-graphitic carbon shell with a thickness of about 1–2 nm. As shown in Figure 1c, our strategy includes one in situ polymerization reaction and two typical restriction processes. The first of these restriction processes involves the addition of Fe ions to a solution containing PO4 3 ions and aniline, where it acts as both a precipitator for PO4 3 and oxidant for aniline. The reaction during this process can be summarized as Equations (1) and (2).

857 citations

Journal ArticleDOI
TL;DR: By using femtosecond transient absorption spectroscopy with visible pump and IR probe to observe generation of injected electrons, plasmon-induced electron transfer from 10 nm gold nanodots to TiO2 nanocrystalline film is observed.
Abstract: By using femtosecond transient absorption spectroscopy with visible pump and IR probe to observe generation of injected electrons, we could directly observe plasmon-induced electron transfer from 10 nm gold nanodots to TiO2 nanocrystalline film. It was revealed that the reaction time was within 240 fs and the yield was about 40%.

855 citations

Journal ArticleDOI
TL;DR: The molecular design of alkyl-functionalized dyes strongly suggests the promising performance of molecular photovoltaics based on organic dyes.
Abstract: We designed and synthesized new alkyl-functionalized organic dyes, MK-1 and MK-2, for dye-sensitized solar cells (DSSCs). Based on the MK-2 dye, a high performance of efficiency (eta, 7.7%; short-circuit current density Jsc = 14.0 mA cm-2, open-circuit voltage Voc = 0.74 V, and fill factor FF = 0.74) was achieved under AM 1.5 G irradiation (100 mW cm-2). Remarkably, the relatively higher Voc for DSSCs based on MK-1 and MK-2 dyes, which have long alkyl chains, were observed among the organic dyes caused by the increasing of the electron lifetime in the conduction band of TiO2. Our molecular design of alkyl-functionalized dyes strongly suggests the promising performance of molecular photovoltaics based on organic dyes.

853 citations


Authors

Showing all 22289 results

NameH-indexPapersCitations
Takeo Kanade147799103237
Ferenc A. Jolesz14363166198
Michele Parrinello13363794674
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Kurunthachalam Kannan12682059886
Shaobin Wang12687252463
Ajit Varki12454258772
Tao Zhang123277283866
Ramamoorthy Ramesh12264967418
Kazuhito Hashimoto12078161195
Katsuhiko Mikoshiba12086662394
Qiang Xu11758550151
Yoshinori Tokura11785870258
Network Information
Related Institutions (5)
Tohoku University
170.7K papers, 3.9M citations

93% related

University of Tokyo
337.5K papers, 10.1M citations

93% related

Osaka University
185.6K papers, 5.1M citations

93% related

Hokkaido University
115.4K papers, 2.6M citations

93% related

Nagoya University
128.2K papers, 3.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022265
20213,064
20203,389
20193,257
20183,181