scispace - formally typeset
Search or ask a question
Institution

National Institute of Advanced Industrial Science and Technology

GovernmentTsukuba, Ibaraki, Japan
About: National Institute of Advanced Industrial Science and Technology is a government organization based out in Tsukuba, Ibaraki, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 22114 authors who have published 65856 publications receiving 1669827 citations. The organization is also known as: Sangyō Gijutsu Sōgō Kenkyū-sho.
Topics: Catalysis, Thin film, Carbon nanotube, Laser, Hydrogen


Papers
More filters
Book ChapterDOI
01 Jan 2014
TL;DR: In this paper, the authors describe the story of the recent developments and the future perspectives in physics of liquid crystals, especially focusing on the contributions by Japanese research groups for the last decade, and present new subjects unmentioned in the book.
Abstract: Over the 100 years since its discovery, liquid crystals have been the intriguing subject for both academia and industries. The textbook of de Gennes The Physics of Liquid Crystals published in 1974 is still the bible for many LC researchers, but new subjects unmentioned in the book have also risen for these years. This chapter describes the story of the recent developments and the future perspectives in physics of liquid crystals, especially focusing on the contributions by Japanese research groups for the last decade.

2,005 citations

Journal ArticleDOI
TL;DR: This new form of hybrid h-BNC material enables the development of bandgap-engineered applications in electronics and optics and properties that are distinct from those of graphene and h-BN.
Abstract: (1) Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005, United States

1,995 citations

Journal ArticleDOI
TL;DR: This dense carbon-nanotube material is advantageous for numerous applications, and here it is demonstrated its use as flexible heaters as well as supercapacitor electrodes for compact energy-storage devices.
Abstract: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes

1,851 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an assessment of 33 deltas chosen to represent the world's Deltas and find that in the past decade, 85% of them experienced severe flooding, resulting in the temporary submergence of 260,000 km2.
Abstract: Many of the world's deltas are densely populated and intensively farmed. An assessment of recent publications indicates that the majority of these deltas have been subject to intense flooding over the past decade, and that this threat will grow as global sea-level rises and as the deltas subside. Many of the world's largest deltas are densely populated and heavily farmed. Yet many of their inhabitants are becoming increasingly vulnerable to flooding and conversions of their land to open ocean. The vulnerability is a result of sediment compaction from the removal of oil, gas and water from the delta's underlying sediments, the trapping of sediment in reservoirs upstream and floodplain engineering in combination with rising global sea level. Here we present an assessment of 33 deltas chosen to represent the world's deltas. We find that in the past decade, 85% of the deltas experienced severe flooding, resulting in the temporary submergence of 260,000 km2. We conservatively estimate that the delta surface area vulnerable to flooding could increase by 50% under the current projected values for sea-level rise in the twenty-first century. This figure could increase if the capture of sediment upstream persists and continues to prevent the growth and buffering of the deltas.

1,825 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: Whether current video datasets have sufficient data for training very deep convolutional neural networks with spatio-temporal three-dimensional (3D) kernels is determined and it is believed that using deep 3D CNNs together with Kinetics will retrace the successful history of 2DCNNs and ImageNet, and stimulate advances in computer vision for videos.
Abstract: The purpose of this study is to determine whether current video datasets have sufficient data for training very deep convolutional neural networks (CNNs) with spatio-temporal three-dimensional (3D) kernels. Recently, the performance levels of 3D CNNs in the field of action recognition have improved significantly. However, to date, conventional research has only explored relatively shallow 3D architectures. We examine the architectures of various 3D CNNs from relatively shallow to very deep ones on current video datasets. Based on the results of those experiments, the following conclusions could be obtained: (i) ResNet-18 training resulted in significant overfitting for UCF-101, HMDB-51, and ActivityNet but not for Kinetics. (ii) The Kinetics dataset has sufficient data for training of deep 3D CNNs, and enables training of up to 152 ResNets layers, interestingly similar to 2D ResNets on ImageNet. ResNeXt-101 achieved 78.4% average accuracy on the Kinetics test set. (iii) Kinetics pretrained simple 3D architectures outperforms complex 2D architectures, and the pretrained ResNeXt-101 achieved 94.5% and 70.2% on UCF-101 and HMDB-51, respectively. The use of 2D CNNs trained on ImageNet has produced significant progress in various tasks in image. We believe that using deep 3D CNNs together with Kinetics will retrace the successful history of 2D CNNs and ImageNet, and stimulate advances in computer vision for videos. The codes and pretrained models used in this study are publicly available1.

1,769 citations


Authors

Showing all 22289 results

NameH-indexPapersCitations
Takeo Kanade147799103237
Ferenc A. Jolesz14363166198
Michele Parrinello13363794674
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Kurunthachalam Kannan12682059886
Shaobin Wang12687252463
Ajit Varki12454258772
Tao Zhang123277283866
Ramamoorthy Ramesh12264967418
Kazuhito Hashimoto12078161195
Katsuhiko Mikoshiba12086662394
Qiang Xu11758550151
Yoshinori Tokura11785870258
Network Information
Related Institutions (5)
Tohoku University
170.7K papers, 3.9M citations

93% related

University of Tokyo
337.5K papers, 10.1M citations

93% related

Osaka University
185.6K papers, 5.1M citations

93% related

Hokkaido University
115.4K papers, 2.6M citations

93% related

Nagoya University
128.2K papers, 3.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022265
20213,064
20203,389
20193,257
20183,181