scispace - formally typeset
Search or ask a question
Institution

National Institute of Advanced Industrial Science and Technology

GovernmentTsukuba, Ibaraki, Japan
About: National Institute of Advanced Industrial Science and Technology is a government organization based out in Tsukuba, Ibaraki, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 22114 authors who have published 65856 publications receiving 1669827 citations. The organization is also known as: Sangyō Gijutsu Sōgō Kenkyū-sho.
Topics: Catalysis, Thin film, Carbon nanotube, Hydrogen, Laser


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the recent developments in the field of research for new catalysts for glycerol is presented, which highlights the role of reaction conditions as well as the possible transport limitations in this tri-phasic system.

450 citations

Journal ArticleDOI
01 Apr 2006
TL;DR: In this article, the authors investigated the connection between decreasing water discharges, global El Nino/Southern Oscillation (ENSO) events and anthropogenic impacts in the drainage basin of the Huanghe River in China.
Abstract: The Huanghe, the second largest river in China, is now under great pressure as a water resource. Using datasets of river water discharge, water consumption and regional precipitation for the past 50 years, we elucidate some connections between decreasing water discharges, global El Nino/Southern Oscillation (ENSO) events and anthropogenic impacts in the drainage basin. Global ENSO events, which directly affected the regional precipitation in the river basin, resulted in approximately 51% decrease in river water discharge to the sea. The degree of anthropogenic impacts on river water discharge is now as great as that of natural influences, accelerating the water losses in the hydrological cycle. The large dams and reservoirs regulated the water discharge and reduced the peak flows by storing the water in the flood season and releasing it in the dry season as needed for agricultural irrigation. Thus, as a result, large dams and reservoirs have shifted the seasonal distribution patterns of water discharge and water consumption and finally resulted in rapidly increasing water consumption. Meanwhile, the annual distribution pattern of water consumption also changed under the regulation of dams and reservoirs, indicating that the people living in the river basin consume the water more and more to suit actual agricultural schedule rather than depending upon natural pattern of annual precipitation. The combination of the increasing water consumption facilitated by the dams and reservoirs and the decreasing precipitation closely associated with the global ENSO events over the past half century has resulted in water scarcity in this world-famous river, as well as in a number of subsequent serious results for the river, delta and coastal ocean.

448 citations

Journal ArticleDOI
TL;DR: In this paper, a novel method for depositing ceramic thick films by aerosol deposition (AD) is presented, where submicron ceramics particles are accelerated by gas flow up to 100-500 m/s and then impacted on a substrate, to form a dense, uniform and hard ceramic layer at room temperature.
Abstract: A novel method for depositing ceramic thick films by aerosol deposition (AD) is presented. Submicron ceramics particles are accelerated by gas flow up to 100–500 m/s and then impacted on a substrate, to form a dense, uniform and hard ceramic layer at room temperature. However, actual deposition mechanism has not been clarified yet. To clarify densification mechanism during AD, a mixed aerosol of α-Al2O3 and Pb(Zr, Ti)O3 powder was deposited to form a composite layer in this study. The cross-section of the layer was observed by HR-TEM to investigate the densification and bonding mechanism of ceramic particles. As a result, a plastic deformation of starting ceramic particles at room temperature was observed.

448 citations

Journal ArticleDOI
TL;DR: Comparison with the experimental ionic conductivities shows that the magnitude and directionality of the interaction energy of the ion pairs play a crucial role in determining the ionic dissociation/association dynamics in the ionsic liquids.
Abstract: The intermolecular interaction energies of nine ion pairs of room temperature ionic liquids were studied by MP2/6-311G** level ab initio calculations. The magnitude of the interaction energies of 1-ethyl-3-methylimidazolium (emim) complexes follows the trend CF3CO2- > BF4- > CF3SO3- > (CF3SO2)2N- ∼ PF6- (−89.8, −85.2, −82.6, −78.8, and −78.4 kcal/mol, respectively). The interaction energies of BF4- complexes with emim, ethylpyridinium (epy), N-ethyl-N,N,N-trimethylammonium ((C2H5)(CH3)3N), and N-ethyl-N-methylpyrrolidinium (empro) are not very different (−85.2, −82.8, −84.6, and −84.4 kcal/mol, respectively), while the size of the orientation dependence of the interaction energies follows the trend emim > epy ∼ (C2H5)(CH3)3N > empro. Comparison with the experimental ionic conductivities shows that the magnitude and directionality of the interaction energy of the ion pairs play a crucial role in determining the ionic dissociation/association dynamics in the ionic liquids. The electrostatic interaction is t...

446 citations


Authors

Showing all 22289 results

NameH-indexPapersCitations
Takeo Kanade147799103237
Ferenc A. Jolesz14363166198
Michele Parrinello13363794674
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Kurunthachalam Kannan12682059886
Shaobin Wang12687252463
Ajit Varki12454258772
Tao Zhang123277283866
Ramamoorthy Ramesh12264967418
Kazuhito Hashimoto12078161195
Katsuhiko Mikoshiba12086662394
Qiang Xu11758550151
Yoshinori Tokura11785870258
Network Information
Related Institutions (5)
Tohoku University
170.7K papers, 3.9M citations

93% related

University of Tokyo
337.5K papers, 10.1M citations

93% related

Osaka University
185.6K papers, 5.1M citations

93% related

Hokkaido University
115.4K papers, 2.6M citations

93% related

Nagoya University
128.2K papers, 3.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022265
20213,064
20203,389
20193,257
20183,181