scispace - formally typeset
Search or ask a question
Institution

National Institute of Advanced Industrial Science and Technology

GovernmentTsukuba, Ibaraki, Japan
About: National Institute of Advanced Industrial Science and Technology is a government organization based out in Tsukuba, Ibaraki, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 22114 authors who have published 65856 publications receiving 1669827 citations. The organization is also known as: Sangyō Gijutsu Sōgō Kenkyū-sho.
Topics: Catalysis, Thin film, Carbon nanotube, Hydrogen, Laser


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the intramolecular bond potentials are determined to reproduce the bond and angle distributions obtained from all-atom (AA) molecular dynamics simulations, and a step-by-step approach using several molecular systems for parameterization makes the CG model versatile and transferable.
Abstract: A new systematic approach to build coarse-grained (CG) molecular models for surfactants/water systems is proposed. A step-by-step approach using several molecular systems for the parameterization makes the CG model versatile and transferable. The intramolecular bond potentials are determined to reproduce the bond and angle distributions obtained from all-atom (AA) molecular dynamics (MD) simulations. A careful choice of the potential function for nonbonded interactions is essential for better structural properties. Density and surface/interfacial tension data are used for parameter fitting, because these thermodynamic properties are of key importance in characterizing the self-organized surfactant structure. Solvation (hydration) and transfer free energies, which play an essential role in determining the partition of solute molecules, are also taken into account in the model.

407 citations

Journal ArticleDOI
10 Apr 2003-Nature
TL;DR: F Fourier transform studies of atomic-scale spatial modulations in the Bi-2212 density of states show strong similarities to the structure of the occupied states, and the copper oxide quasiparticles apparently exhibit particle–hole mixing similar to that of conventional superconductors.
Abstract: The electronic structure of simple crystalline solids can be completely described in terms either of local quantum states in real space (r-space), or of wave-like states defined in momentum-space (k-space). However, in the copper oxide superconductors, neither of these descriptions alone may be sufficient. Indeed, comparisons between r-space and k-space studies of Bi2Sr2CaCu2O8+delta (Bi-2212) reveal numerous unexplained phenomena and apparent contradictions. Here, to explore these issues, we report Fourier transform studies of atomic-scale spatial modulations in the Bi-2212 density of states. When analysed as arising from quasiparticle interference, the modulations yield elements of the Fermi-surface and energy gap in agreement with photoemission experiments. The consistency of numerous sets of dispersing modulations with the quasiparticle interference model shows that no additional order parameter is required. We also explore the momentum-space structure of the unoccupied states that are inaccessible to photoemission, and find strong similarities to the structure of the occupied states. The copper oxide quasiparticles therefore apparently exhibit particle-hole mixing similar to that of conventional superconductors. Near the energy gap maximum, the modulations become intense, commensurate with the crystal, and bounded by nanometre-scale domains. Scattering of the antinodal quasiparticles is therefore strongly influenced by nanometre-scale disorder.

406 citations

Journal ArticleDOI
TL;DR: The expression of hepatic ISGs is strongly associated with treatment response and genetic variation of IL28B, and the differential role of host and viral factors as predicting factors may also be present.

406 citations

Journal ArticleDOI
TL;DR: It is shown that molecular rotator motion is controllable using an external electric field and demonstrated how such molecular rotators can be used as polarization rotation units in ferroelectric molecules.
Abstract: Molecular rotation has attracted much attention with respect to the development of artificial molecular motors, in an attempt to mimic the intelligent and useful functions of biological molecular motors. Random motion of molecular rotators—for example the 180∘ flip-flop motion of a rotatory unit—causes a rotation of the local structure. Here, we show that such motion is controllable using an external electric field and demonstrate how such molecular rotators can be used as polarization rotation units in ferroelectric molecules. In particular, m-fluoroanilinium forms a hydrogen-bonding assembly with dibenzo[18]crown-6, which was introduced as the counter cation of [Ni(dmit)2]− anions (dmit2−=2-thioxo-1,3-dithiole-4,5-dithiolate). The supramolecular rotator of m-fluoroanilinium exhibited dipole rotation by the application of an electric field, and the crystal showed a ferroelectric transition at 348 K. These findings will open up new strategies for ferroelectric molecules where a chemically designed dipole unit enables control of the nature of the ferroelectric transition temperature. Molecular rotors have seen considerable interest as functional molecules on surfaces or for applications as memory devices. However, it is now shown that molecular rotation may also be used to induce ferroelectricity in a molecule.

405 citations

Journal ArticleDOI
TL;DR: In this paper, a review article summarizes previous and ongoing studies on thermoelectric oxide-based materials and further discusses nanostructuring approaches for both SrTiO3 and CaMnO3 materials.
Abstract: Thermoelectric power generation technology is now expected to help overcome global warming and climate change issues by recovering and converting waste heat into electricity, thus improving the total efficiency of energy utilization and suppressing the consumption of fossil fuels that are supposedly the major sources of CO2 emission. Thermoelectric oxides, composed of nontoxic, naturally abundant, light, and cheap elements, are expected to play a vital role in extensive applications for waste heat recovery in an air atmosphere. This review article summarizes our previous and ongoing studies on SrTiO3-based materials and further discusses nanostructuring approaches for both SrTiO3 and CaMnO3 materials. ZnMnGaO4 is taken as a model case for constructing a self-assembled nanostructure. The present status of thermoelectric oxide module development is also introduced and discussed.

405 citations


Authors

Showing all 22289 results

NameH-indexPapersCitations
Takeo Kanade147799103237
Ferenc A. Jolesz14363166198
Michele Parrinello13363794674
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Kurunthachalam Kannan12682059886
Shaobin Wang12687252463
Ajit Varki12454258772
Tao Zhang123277283866
Ramamoorthy Ramesh12264967418
Kazuhito Hashimoto12078161195
Katsuhiko Mikoshiba12086662394
Qiang Xu11758550151
Yoshinori Tokura11785870258
Network Information
Related Institutions (5)
Tohoku University
170.7K papers, 3.9M citations

93% related

University of Tokyo
337.5K papers, 10.1M citations

93% related

Osaka University
185.6K papers, 5.1M citations

93% related

Hokkaido University
115.4K papers, 2.6M citations

93% related

Nagoya University
128.2K papers, 3.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022265
20213,064
20203,389
20193,257
20183,181