scispace - formally typeset
Search or ask a question
Institution

National Institute of Advanced Industrial Science and Technology

GovernmentTsukuba, Ibaraki, Japan
About: National Institute of Advanced Industrial Science and Technology is a government organization based out in Tsukuba, Ibaraki, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 22114 authors who have published 65856 publications receiving 1669827 citations. The organization is also known as: Sangyō Gijutsu Sōgō Kenkyū-sho.
Topics: Catalysis, Thin film, Carbon nanotube, Hydrogen, Laser


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive report on a two-step synthesis of dimethyl carbonate (DMC) from epoxides, carbon dioxide and methanol using various basic metal oxide catalysts was given.
Abstract: This paper gives a comprehensive report on a two-step synthesis of dimethyl carbonate (DMC) from epoxides, carbon dioxide and methanol using various basic metal oxide catalysts. The first step is the reaction of ethylene oxide or propylene oxide with CO 2 to form the corresponding cyclic carbonates, and the second step is the transesterification reaction of the cyclic carbonates with methanol to DMC and glycols. Among the catalysts examined, MgO is the most active and selective for both these reactions. Other alcohols can be used for the second step, but the activity decreases as the carbon number of the alcohol increases. Although a one-pot synthesis of DMC, i.e. the sequential reaction of the epoxide, CO 2 and methanol, is also possible with MgO, the selectivity is low because of the alcoholysis of the epoxide. In contrast with the reactions of ethylene oxide and propylene oxide, when styrene oxide is used for the first reaction and for the one-pot synthesis, mandelic acid is produced. Basic properties of the metal oxide catalysts were measured by temperature programmed desorption of CO 2 . The relationship between the catalytic performance and the basic property is discussed.

354 citations

Journal ArticleDOI
TL;DR: The results establish a route for the bulk production of exceptionally long and stable chains composed of more than 6,000 carbon atoms, representing an elegant forerunner towards the final goal of carbyne's bulk production.
Abstract: Strong chemical activity and extreme instability in ambient conditions characterize carbyne, an infinite sp1 hybridized carbon chain. As a result, much less has been explored about carbyne as compared to other carbon allotropes such as fullerenes, nanotubes and graphene. Although end-capping groups can be used to stabilize carbon chains, length limitations are still a barrier for production, and even more so for application. We report a method for the bulk production of long acetylenic linear carbon chains protected by thin double-walled carbon nanotubes. The synthesis of very long arrangements is confirmed by a combination of transmission electron microscopy, X-ray diffraction and (near-field) resonance Raman spectroscopy. Our results establish a route for the bulk production of exceptionally long and stable chains composed of more than 6,000 carbon atoms, representing an elegant forerunner towards the final goal of carbyne’s bulk production. One-dimensional linear carbon chains reaching a length close to 800 nm have been synthesized at high temperature and high vacuum using double-walled carbon nanotubes as nanoreactors.

352 citations

Journal ArticleDOI
TL;DR: The results showed that CLOCK and CRY proteins are involved in the transcriptional regulation of many circadian output genes in the mouse liver and appears to be involved in various physiological functions such as cell cycle, lipid metabolism, immune functions, and proteolysis in peripheral tissues.

352 citations

Journal ArticleDOI
TL;DR: It was found that the PLA matrix demonstrates large area, plastic deformation (shear yielding) in the blend upon being subjected the tensile and impact tests, which is an important energy-dissipation process and leads to a toughened, biodegradable polymer blend.
Abstract: Melt blending of polylactide (PLA) and a biodegradable poly(ether)urethane (PU) elastomer has been performed in an effort to toughen the polylactide without compromising its biodegradability and biocompatibility. The miscibility, phase morphology, mechanical properties, and toughening mechanism of the blend were investigated. The blend was found by dynamic mechanical analysis to be a partially miscible system with shifted glass transition temperatures. The PU elastomer was dispersed in the PLA matrix with a domain size of sub-micrometer scale. The addition of PU elastomer not only accelerated the crystallization speed, but also decreased the crystallinity of the PLA. With an increase in PU content, the blend shows decreased tensile strength and modulus; however, the elongation at break and the impact strength were significantly increased, indicating the toughening effects of the PU elastomer on the PLA. The brittle fracture of neat PLA was gradually transformed into ductile fracture by the addition of PU elastomer. It was found that the PLA matrix demonstrates large area, plastic deformation (shear yielding) in the blend upon being subjected the tensile and impact tests, which is an important energy-dissipation process and leads to a toughened, biodegradable polymer blend.

351 citations


Authors

Showing all 22289 results

NameH-indexPapersCitations
Takeo Kanade147799103237
Ferenc A. Jolesz14363166198
Michele Parrinello13363794674
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Kurunthachalam Kannan12682059886
Shaobin Wang12687252463
Ajit Varki12454258772
Tao Zhang123277283866
Ramamoorthy Ramesh12264967418
Kazuhito Hashimoto12078161195
Katsuhiko Mikoshiba12086662394
Qiang Xu11758550151
Yoshinori Tokura11785870258
Network Information
Related Institutions (5)
Tohoku University
170.7K papers, 3.9M citations

93% related

University of Tokyo
337.5K papers, 10.1M citations

93% related

Osaka University
185.6K papers, 5.1M citations

93% related

Hokkaido University
115.4K papers, 2.6M citations

93% related

Nagoya University
128.2K papers, 3.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022265
20213,064
20203,389
20193,257
20183,181