scispace - formally typeset
Search or ask a question
Institution

National Institute of Technology, Karnataka

EducationMangalore, Karnataka, India
About: National Institute of Technology, Karnataka is a education organization based out in Mangalore, Karnataka, India. It is known for research contribution in the topics: Computer science & Corrosion. The organization has 5017 authors who have published 7057 publications receiving 70367 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors explored the utilization of three methods of modification of Activated Carbon (AC) produced from coconut shell by treating it with nitric acid (HNO3), potassium permanganate (KMnO4), and heating at 600°C to improve the adsorption capacity.
Abstract: Activated Carbon (AC) is an adsorbent having high surface area which makes the process of removing heavy metals from wastewater (such as landfill leachate) very effective. This study explored the utilization of three methods of modification of AC produced from coconut shell by treating it with nitric acid (HNO3), potassium permanganate (KMnO4) and heating at 600°C to improve the adsorption capacity. The AC can remove multi-pollutants in the filtration process which was used to treat landfill leachate. The water quality parameters such as pH, TSS, Ammonia-Nitrogen and a few heavy metals were considered in the present study. Results showed that the removal of these parameters was proportional with the increase of contact time and the bed depth of AC. The isotherm analysis of the adsorption of modified AC showed the best Removal Efficiency (RE) can be achieved when AC treated with KMnO4 for NH3-N, zinc, TSS and sulphide. The morphology of the AC was studied through Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) pattern analysis and Fourier Transform Infrared (FTIR) analysis. It was found that various types of oxygen functional groups were introduced onto the surface of coconut shell derived AC through oxidation using HNO3. FTIR was used to characterize the surface oxygen functional groups. The surface functional groups such as N-H and C-H stretching played a significant role in heavy metals adsorption. Hence, it can be concluded that the hybrid technique by using electrolysis process with AC adsorption be an effective way to remove the suspended solids and heavy metals from landfill leachate and thus able to reduce environmental pollution.

33 citations

Journal ArticleDOI
TL;DR: In this article, structural investigation by FTIR spectroscopy revealed that the substitution of P2O5 by CaO depolymerizes the phosphate glass network by systematic conversion of Q3 structural units to Q2 structural units by breaking the P-O-P links.
Abstract: Binary calcium phosphate glasses in the system, xCaO-(100 − x) P2O5 with x = 30, 35, 40, 45, and 50 mol % were prepared by conventional melt quenching technique. The density, molar volume and refractive index of the glasses were found to increase with the increase in CaO content. Structural investigation by FTIR spectroscopy revealed that the substitution of P2O5 by CaO depolymerizes the phosphate glass network by systematic conversion of Q3 structural units to Q2 structural units by breaking the P-O-P links. From the optical absorption studies, the optical band gap values were found to decrease with increasing CaO content which can be due to increase in the concentration of non-bridging oxygens in the glass network. Vickers hardness increased with the calcium oxide content due to densification. The fracture toughness decreases with the increase in CaO content due to the increase in the bond density between the modifying cations and the non-bridging oxygens in the glass network. It was observed that brittleness increases with the addition of CaO content which can be mainly attributed to the decrease in the molar volume.

33 citations

Journal ArticleDOI
TL;DR: In this paper, magnetic field tuning of the structure and Whispering Gallery Mode lasing from ferromagnetic nematic liquid crystal micro-droplets was reported. But the results were limited to the case of a very low external magnetic field.
Abstract: We report magnetic field tuning of the structure and Whispering Gallery Mode lasing from ferromagnetic nematic liquid crystal micro-droplets. Microlasers were prepared by dispersing a nematic liquid crystal, containing magnetic nanoparticles and fluorescent dye, in a glycerol-lecithin matrix. The droplets exhibit radial director structure, which shows elastic distortion at a very low external magnetic field. The fluorescent dye doped ferromagnetic nematic droplets show Whispering Gallery Mode lasing, which is tunable by the external magnetic field. The tuning of the WGM lasing modes is linear in magnetic field with a wavelength-shift of the order of 1 nm/100 mT. Depending on the lasing geometry, the WGMs are red- or blue-shifted.

33 citations

Journal ArticleDOI
TL;DR: One-step method has been employed in the synthesis of copper nanofluids as mentioned in this paper, where copper nitrate is reduced by glucose in the presence of sodium lauryl sulfate.
Abstract: One-step method has been employed in the synthesis of copper nanofluids. Copper nitrate is reduced by glucose in the presence of sodium lauryl sulfate. The synthesized particles are characterized by X-ray diffraction technique for the phase structure; electron diffraction X-ray analysis for chemical composition; transmission electron microscopy and field emission scanning electron micros- copy for the morphology; Fourier-transform infrared spectroscopy and ultraviolet-visible spectroscopy for the analysis of ingredients of the solution. Thermal conduc- tivity, sedimentation and rheological measurements have also been carried out. It is found that the reaction param- eters have considerable effect on the size of the particle formed and rate of the reaction. The techniques confirm that the synthesized particles are copper. The reported method showed promising increase in the thermal con- ductivity of the base fluid and is found to be reliable, simple and cost-effective method for preparing heat transfer fluids with higher stability.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of surface mechanical attrition treatment (SMAT) on corrosion resistance and plasma nitriding behavior of AISI 304L stainless steel (SS) was investigated.
Abstract: In the present study, the effect of surface mechanical attrition treatment (SMAT) on corrosion resistance and plasma nitriding behavior of AISI 304L stainless steel (SS) was investigated. Mechanical twins and deformation induced martensite phase were observed in the SMAT affected region. SMAT improved the corrosion resistance and nitriding kinetics of AISI 304L SS. Effective nitriding time and hence, the thickness of the nitrided layer were increased with increase in the duration of chemical etching and a decrease in the stability of passive layer on the SMATed specimens. Surface hardness of the nitrided specimens was dependent on the formation of expanded austenite (γN) and its decomposition (especially, at higher effective nitriding time).

33 citations


Authors

Showing all 5100 results

NameH-indexPapersCitations
Ajay Kumar5380912181
Bhiksha Raj5135913064
Alexander P. Lyubartsev491849200
Vijay Nair4742510411
Sukumar Mishra444057905
Arun M. Isloor382616272
Vinay Kumaran362624473
M. C. Ray301152662
Airody Vasudeva Adhikari301192832
Ian R. Lane271292947
D. Krishna Bhat26951715
Anurag Kumar261262276
Soma Biswas251272195
Chandan Kumar25661806
H.S. Nagaraja23901609
Network Information
Related Institutions (5)
Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

96% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

95% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

94% related

Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

94% related

Jadavpur University
27.6K papers, 422K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022175
2021938
2020893
2019838
2018740