scispace - formally typeset
Search or ask a question
Institution

National Institute of Technology, Meghalaya

EducationShillong, India
About: National Institute of Technology, Meghalaya is a education organization based out in Shillong, India. It is known for research contribution in the topics: Control theory & Electric power system. The organization has 503 authors who have published 1062 publications receiving 6818 citations. The organization is also known as: NIT Meghalaya & NITM.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Rutin ( a natural compound) has the highest inhibitor efficiency among the 33 molecules studied, followed by ritonavir (control drug), emetine (anti-protozoal), hesperidin (a natural compound), lopinavir ( control drug) and indinavir(anti-viral drug).
Abstract: A new strain of a novel infectious disease affecting millions of people, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently been declared as a pandemic by the World...

269 citations

Journal ArticleDOI
TL;DR: Current research trends in the field of AUVs and future research directions are presented and localization and navigation techniques such as inertial navigation to simultaneous localization and mapping being used in current AUVs are discussed in detail.

250 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid 1-bit full adder design employing both complementary metal-oxide-semiconductor (CMOS) logic and transmission gate logic is reported and is found to offer significant improvement in terms of power and speed.
Abstract: In this paper, a hybrid 1-bit full adder design employing both complementary metal–oxide–semiconductor (CMOS) logic and transmission gate logic is reported. The design was first implemented for 1 bit and then extended for 32 bit also. The circuit was implemented using Cadence Virtuoso tools in 180-and 90-nm technology. Performance parameters such as power, delay, and layout area were compared with the existing designs such as complementary pass-transistor logic, transmission gate adder, transmission function adder, hybrid pass-logic with static CMOS output drive full adder, and so on. For 1.8-V supply at 180-nm technology, the average power consumption (4.1563 $\mu $ W) was found to be extremely low with moderately low delay (224 ps) resulting from the deliberate incorporation of very weak CMOS inverters coupled with strong transmission gates. Corresponding values of the same were 1.17664 $\mu $ W and 91.3 ps at 90-nm technology operating at 1.2-V supply voltage. The design was further extended for implementing 32-bit full adder also, and was found to be working efficiently with only 5.578-ns (2.45-ns) delay and 112.79- $\mu $ W (53.36- $\mu $ W) power at 180-nm (90-nm) technology for 1.8-V (1.2-V) supply voltage. In comparison with the existing full adder designs, the present implementation was found to offer significant improvement in terms of power and speed.

215 citations

Journal ArticleDOI
TL;DR: An aggregate model of EV fleets and improved version of fractional order (FO) controller is provided in all the areas for robust LFC considering bilateral transactions and Numerous simulations are conducted to validate the superiority of the proposed control strategy.
Abstract: Introduction of vehicle-to-grid technology offer electric vehicles (EVs) to participate in different ancillary services under competitive electric market. EVs provide an opportunity to grow new products and services for grid management. Particularly, EVs, which is a new form of distributed energy storage, can be used to compensate the uncontracted power in the local area if the contracts between the market players are violated. This paper presents the participation of EVs for load frequency control (LFC) under deregulated environment along with other conventional sources such as hydro, thermal, and gas turbine units. An aggregate model of EV fleets and improved version of fractional order (FO) controller is provided in all the areas for robust LFC considering bilateral transactions. Flower pollination algorithm, which is one of the new proven nature inspired algorithm employed to choose the optimal parameters of the FO controllers under several scenarios. Numerous simulations are conducted to validate the superiority of the proposed control strategy.

199 citations

Journal ArticleDOI
TL;DR: In this paper, the updated concepts on the nature of π-π interactions and their use in various fields ranging from crystal engineering to materials science to biochemistry are discussed and discussed.
Abstract: The updated concepts on the nature of π–π interactions and their use in various fields ranging from crystal engineering to materials science to biochemistry are discussed. This is the opening paper...

188 citations


Authors
Network Information
Related Institutions (5)
Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

88% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

87% related

Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

87% related

Indian Institute of Technology Madras
36.4K papers, 590.4K citations

86% related

Indian Institute of Technology Bombay
33.5K papers, 570.5K citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202236
2021191
2020220
2019184
2018155