scispace - formally typeset
Search or ask a question

Showing papers by "National Institute of Technology, Silchar published in 2004"


Journal ArticleDOI
TL;DR: A detailed review of the up-to-date work on scour at abutments is presented in this article, including all possible aspects, such as flow field, scouring process, parameters affecting scour depth, time-variation of scour and scour estimation formulae.
Abstract: Failure of bridges due to local scour has motivated many investigators to explore the causes of scouring and to predict the maximum scour depth at abutments. In this paper, a detailed review of the up-to-date work on scour at abutments is presented including all possible aspects, such as flow field, scouring process, parameters affecting scour depth, time-variation of scour and scour depth estimation formulae.

101 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the effects of different parameters pertaining to scour at short abutments (ratio of abutment length to approaching flow depth less than unity).
Abstract: Experiments on local scour at short abutments (ratio of abutment length to approaching flow depth less than unity), namely vertical-wall, 45° wing-wall, and semicircular, embedded in a bed of relatively fine noncohesive sediment overlain by a thin armor-layer of coarser sediment, were conducted for different flow conditions, thickness of armor-layers, armor-layer, and bed sediments. The abutments were aligned with the approaching flow in a rectangular channel. The armor-layer and the bed underneath it were composed of different combinations of uniform sediments. In the experiments, the approaching flow velocities were restricted to the clear-water scour condition with respect to the armor-layer particles. Depending on the approaching flow conditions, three cases of scour at abutments in armored beds were identified. Effects of different parameters pertaining to scour at abutments are examined. The comparison of the experimental data shows that the scour depth at an abutment with an armor-layer in clear-water scour condition under limiting stability of the surface particles (approaching flow velocity nearly equaling critical velocity for the threshold motion of surface particles) is always greater than that without armor-layer for the same bed sediments. The characteristic parameters affecting the maximum equilibrium nondimensional scour depth (scour depth-abutment length ratio), identified based on the physical reasoning and dimensional analysis, are excess abutment Froude number, flow depth-abutment length ratio, armor-layer thickness-armor particle diameter ratio, and armor particle-bed sediment diameter ratio. The experimental data of clear-water scour condition in thinly armored beds under limiting stability of surface particles were used to determine the equation of maximum equilibrium scour depth through regression analysis. The estimated scour depths were in agreement with the experimental scour depths. Also, an equation of maximum equilibrium scour depth in uniform sediments was obtained.

45 citations


Journal ArticleDOI
TL;DR: In this paper, a nonlinear optimization model is developed to transmute a unit hydrograph into a probability distribution function (PDF), where the objective function is to minimize the sum of the square of the deviation between predicted and actual direct runoff hydrograms of a watershed.
Abstract: A nonlinear optimization model is developed to transmute a unit hydrograph into a probability distribution function (PDF). The objective function is to minimize the sum of the square of the deviation between predicted and actual direct runoff hydrograph of a watershed. The predicted runoff hydrograph is estimated by using a PDF. In a unit hydrograph, the depth of rainfall excess must be unity and the ordinates must be positive. Incorporation of a PDF ensures that the depth of rainfall excess for the unit hydrograph is unity, and the ordinates are also positive. Unit hydrograph ordinates are in terms of intensity of rainfall excess on a discharge per unit catchment area basis, the unit area thus representing the unit rainfall excess. The proposed method does not have any constraint. The nonlinear optimization formulation is solved using binary-coded genetic algorithms. The number of variables to be estimated by optimization is the same as the number of probability distribution parameters; gamma and log-normal probability distributions are used. The existing nonlinear programming model for obtaining optimal unit hydrograph has also been solved using genetic algorithms, where the constrained nonlinear optimization problem is converted to an unconstrained problem using penalty parameter approach. The results obtained are compared with those obtained by the earlier LP model and are fairly similar.

21 citations


Journal ArticleDOI
01 Nov 2004-Pramana
TL;DR: In this article, the resonance Raman (RR) spectra of nickel octaethyl porphyrin, Ni(OEP), in CH2Cl2 (solvent) at different excitations such as 514.5, 488.0, 441.6 and 406.7 nm are recorded and analyzed.
Abstract: The resonance Raman (RR) spectra of nickel octaethyl porphyrin, Ni(OEP), in CH2Cl2 (solvent) at different excitations such as 514.5, 488.0, 441.6 and 406.7 nm are recorded and analysed. The results of the theory of distortion-induced RR intensity is applied to the observed spectra to determine the excited electronic state symmetry of porphyrin in Ni(OEP). It is concluded that the porphyrin molecule (D4h structure) attains a non-polar distorted structure of D2 symmetry rather than S4 symmetry in CH2Cl2 solution.

13 citations