scispace - formally typeset
Search or ask a question
Institution

National Jewish Health

HealthcareDenver, Colorado, United States
About: National Jewish Health is a healthcare organization based out in Denver, Colorado, United States. It is known for research contribution in the topics: T cell & Asthma. The organization has 883 authors who have published 833 publications receiving 79201 citations. The organization is also known as: National Jewish Medical and Research Center.
Topics: T cell, Asthma, Population, Lung, Antigen


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown for both species that mutations at the C-terminal end of this epitope dramatically improve presentation to these T cells, suggesting that pancreas-specific posttranslational modifications of this peptide may play a role in the induction of diabetes and explain how the pathogenic T cells escape deletion in the thymus.
Abstract: A polymorphism at β57 in some major histocompatibility complex class II (MHCII) alleles of rodents and humans is associated with a high risk for developing type 1 diabetes (T1D). However, a highly diabetogenic insulin B chain epitope within the B:9-23 peptide is presented poorly by these alleles to a variety of mouse and human CD4 T cells isolated from either nonobese diabetic (NOD) mice or humans with T1D. We have shown for both species that mutations at the C-terminal end of this epitope dramatically improve presentation to these T cells. Here we present the crystal structures of these mutated peptides bound to mouse IAg7 and human HLA-DQ8 that show how the mutations function to improve T-cell activation. In both peptide binding grooves, the mutation of B:22R to E in the peptide changes a highly unfavorable side chain for the p9 pocket to an optimal one that is dependent on the β57 polymorphism, accounting for why these peptides bind much better to these MHCIIs. Furthermore, a second mutation of the adjacent B:21 (E to G) removes a side chain from the surface of the complex that is highly unfavorable for a subset of NOD mouse CD4 cells, thereby greatly enhancing their response to the complex. These results point out the similarities between the mouse and human responses to this B chain epitope in T1D and suggest there may be common posttranslational modifications at the C terminus of the peptide in vivo to create the pathogenic epitopes in both species.

30 citations

Journal ArticleDOI
S C Erzurum, Kus Ml1, Bohse C1, Elliot L. Elson1, Worthen Gs1 
TL;DR: Filtration of cells through 8-microns pores showed that undifferentiated cells were markedly retained and did not exhibit any further retention with FMLP, which lends support to the hypothesis that decreases in cell deformability contribute to neutrophil retention in the pulmonary microvasculature.
Abstract: Neutrophil sequestration in pulmonary capillaries occurs prior to the development of lung injury, but the mechanisms by which neutrophils are retained are unclear. We hypothesized that decreases in cell deformability, in the absence of an increase in cell surface adhesive properties, would be sufficient to cause cell retention in a filtration apparatus modeling the pulmonary microvasculature. The myelomonocytic cell line (HL60 cell line) was used to test the hypothesis since these cells were unable to increase adherence in response to n-formylmethionylleucylphenylalanine (FMLP) in either the undifferentiated state or when differentiated towards granulocytes. With differentiation, HL60 cell volume decreased, and f-actin organization changed from a thick cortical rim with focal areas of f-actin in undifferentiated cells to a thin rim in differentiated cells. Differentiated cells responded to FMLP by reorganizing f-actin and increasing stiffness. Undifferentiated cells did not exhibit changes in f-actin with stimulation, were stiffer than differentiated cells, and did not increase stiffness in response to FMLP. Cytochalasin D (CD), which disrupted the cytoarchitecture as assessed by confocal microscopy but did not affect cell volume or adherence, decreased the stiffness of undifferentiated and FMLP-stimulated differentiated cells, thus suggesting the importance of microfilament organization in the stiffness of these cells. Filtration of cells through 8-microns pores showed that undifferentiated cells were markedly retained and did not exhibit any further retention with FMLP. Differentiated cells exposed to FMLP exhibited a concentration-dependent increase in retention in 8-microns pores that was abolished by CD. In addition, CD reduced retention of undifferentiated cells, indicating that microfilament organization is an important factor in determining a cell's rheologic properties. In conclusion, FMLP-stimulated microfilament reorganization, which increased cell stiffness, was sufficient in the absence of adherence factors to cause cell retention in a filtration system. This lends support to the hypothesis that decreases in cell deformability contribute to neutrophil retention in the pulmonary microvasculature.

30 citations

Patent
15 Nov 2006
TL;DR: In this article, the authors present methods for therapy of cystic fibrosis and other conditions such as cancer using agents capable of increasing thiol-containing compound transport via a transporter system (i.e., MDR-1 or MRP-2).
Abstract: Methods for therapy of cystic fibrosis and other conditions such as cancer are provided. The methods comprise one or more agents capable of increasing thiol-containing compound transport via a transporter system (i.e., ABC transporters such as MDR-1 or MRP-2) in cells. Other embodiments include the use of agents to modulate transport of thiol-containing compounds within the cell. Therapeutic methods involve the administration of such agents to a patient afflicted with cystic fibrosis, cancer and/or another condition responsive to stimulation of thiol-containing compound transport.

30 citations

Journal ArticleDOI
TL;DR: The marked increase in EMAP II's temporal expression, its distribution in the perivascular and dysplastic alveolar regions of the lungs, and the interruption in vasculogenesis in BPD suggest that neovascularization and factors that negatively influence blood vessel formation may play a role in B PD evolution.
Abstract: Impaired neovascularization is associated with the pathologic presentation of bronchopulmonary dysplasia (BPD). To determine if neovascularization and factors that negatively influence blood vessel formation play a role in the evolution of BPD, we examined the temporospatial distribution of a protein known to inhibit fetal lung neovascularization with associated dysplastic lung formation, endothelial-monocyte activating polypeptide (EMAP) II. Immunohistochemical analysis of EMAP II in lung tissues of human infants with BPD indicated an elevation in EMAP II abundance as compared with control. Utilizing a baboon model, western analysis indicated that EMAP II was increased twofold in those baboons with pathologic signs of BPD as compared with gestational controls. Consistent with our findings in human tissues, immunohistochemistry and in situ hybridization demonstrate that EMAP II is highly expressed in the perivascular stroma and dysplastic lung periphery in neonatal baboons with BPD as compared with controls. Lastly, there is a premature acceleration in EMAP II's perivascular distribution in term newborn baboon as compared with gestational control. The marked increase in EMAP II's temporal expression, its distribution in the perivascular and dysplastic alveolar regions of the lungs, and the interruption in vasculogenesis in BPD suggest that neovascularization and factors that negatively influence blood vessel formation may play a role in BPD evolution.

30 citations

Journal ArticleDOI
TL;DR: It is demonstrated that SP-A is vital to preserving lung homeostasis and host defense to this clinically relevant strain of Mp by curtailing inflammatory cell recruitment and limiting an overzealous TNF-α response.
Abstract: The lung is constantly challenged during normal breathing by a myriad of environmental irritants and infectious insults. Pulmonary host defense mechanisms maintain homeostasis between inhibition/clearance of pathogens and regulation of inflammatory responses that could injure the airway epithelium. One component of this defense mechanism, surfactant protein-A (SP-A), exerts multifunctional roles in mediating host responses to inflammatory and infectious agents. SP-A has a bacteriostatic effect on Mycoplasma pneumoniae (Mp), which occurs by binding surface disaturated phosphatidylglycerols. SP-A can also bind the Mp membrane protein, MPN372. In this study, we investigated the role of SP-A during acute phase pulmonary infection with Mp using mice deficient in SP-A. Biologic responses, inflammation, and cellular infiltration, were much greater in Mp infected SP-A −/− mice than wild-type mice. Likewise, physiologic responses (airway hyperresponsiveness and lung compliance) to Mp infection were more severely affected in SP-A −/− mice. Both Mp-induced biologic and physiologic changes were attenuated by pharmacologic inhibition of TNF-α. Our findings demonstrate that SP-A is vital to preserving lung homeostasis and host defense to this clinically relevant strain of Mp by curtailing inflammatory cell recruitment and limiting an overzealous TNF-α response.

30 citations


Authors

Showing all 901 results

NameH-indexPapersCitations
Thomas V. Colby12650160130
John W. Kappler12246457541
Donald Y.M. Leung12161450873
Philippa Marrack12041654345
Jeffrey M. Drazen11769352493
Peter M. Henson11236954246
David A. Schwartz11095853533
David A. Lynch10871459678
Norman R. Pace10129750252
Kevin K. Brown10038747219
Stanley J. Szefler9955437481
Erwin W. Gelfand9967536059
James D. Crapo9847337510
Yang Xin Fu9739033526
Stephen D. Miller9443330499
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

91% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

91% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

91% related

Baylor College of Medicine
94.8K papers, 5M citations

91% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202214
202113
202017
201917
201841