scispace - formally typeset
Search or ask a question
Institution

National Ocean Service

GovernmentSilver Spring, Maryland, United States
About: National Ocean Service is a government organization based out in Silver Spring, Maryland, United States. It is known for research contribution in the topics: Algal bloom & Population. The organization has 500 authors who have published 643 publications receiving 46096 citations.


Papers
More filters
Journal ArticleDOI
18 Oct 2017-PLOS ONE
TL;DR: The hypothesis that G. excentricus is the primary source of ciguatoxins in the Atlantic is confirmed, it should be possible to identify areas where CFP risk is greatest by monitoring only G.Excentricus abundance using species-specific molecular assays.
Abstract: Dinoflagellate species belonging to the genera Gambierdiscus and Fukuyoa produce ciguatoxins (CTXs), potent neurotoxins that concentrate in fish causing ciguatera fish poisoning (CFP) in humans. While the structures and toxicities of ciguatoxins isolated from fish in the Pacific and Caribbean are known, there are few data on the variation in toxicity between and among species of Gambierdiscus and Fukuyoa. Quantifying the differences in species-specific toxicity is especially important to developing an effective cell-based risk assessment strategy for CFP. This study analyzed the ciguatoxicity of 33 strains representing seven Gambierdiscus and one Fukuyoa species using a cell based Neuro-2a cytotoxicity assay. All strains were isolated from either the Caribbean or Gulf of Mexico. The average toxicity of each species was inversely proportional to growth rate, suggesting an evolutionary trade-off between an investment in growth versus the production of defensive compounds. While there is 2- to 27-fold variation in toxicity within species, there was a 1740-fold difference between the least and most toxic species. Consequently, production of CTX or CTX-like compounds is more dependent on the species present than on the random occurrence of high or low toxicity strains. Seven of the eight species tested (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, Gambierdiscus ribotype 2, G. silvae and F. ruetzleri) exhibited low toxicities, ranging from 0 to 24.5 fg CTX3C equivalents cell-1, relative to G. excentricus, which had a toxicity of 469 fg CTX3C eq. cell-1. Isolates of G. excentricus from other regions have shown similarly high toxicities. If the hypothesis that G. excentricus is the primary source of ciguatoxins in the Atlantic is confirmed, it should be possible to identify areas where CFP risk is greatest by monitoring only G. excentricus abundance using species-specific molecular assays.

102 citations

Journal ArticleDOI
TL;DR: Overall, larval transport was determined by circulation but was modified by larval vertical distributions, which demonstrated the importance of along-shelf transport in what is generally thought to be a ‘cross- shelf’ problem.
Abstract: A three-dimensional circulation model was used in conjunction with larval fish vertical behaviour models to study the interaction between larval vertical distribution, advection and the outcome of larval transport along the central portion of the east coast of the United States. The circulation model was forced by tides, a northern boundary inflow, and winds. Vertical behaviour models were developed for Atlantic menhaden (Brevoortia tyrannus) and spot (Leiostomus xanthurus). The purpose of this modelling effort was to investigate the transport pathways of Atlantic menhaden and spot larvae from offshore spawning grounds to estuarine nursery habitats. The coupled circulation and behavioural model demonstrated the importance of along-shelf transport in what is generally thought to be a ‘cross-shelf’ problem. Cross-shelf transport was associated with bathymetric features, such as shoals. Both physical (e.g. wind) and biological (e.g. changes in larval behaviour) events were responsible for many of the observed patterns in larval transport. Overall, larval transport was determined by circulation but was modified by larval vertical distributions.

102 citations

Journal ArticleDOI
TL;DR: This work compiled population genetic studies of deep‐sea fauna and estimated dispersal distances for 51 studies using a method based on isolation‐by‐distance slopes to provide the first rough estimate of the range of disperseal distances in the deep sea.
Abstract: With anthropogenic impacts rapidly advancing into deeper waters, there is growing interest in establishing deep-sea marine protected areas (MPAs) or reserves. Reserve design depends on estimates of connectivity and scales of dispersal for the taxa of interest. Deep-sea taxa are hypothesized to disperse greater distances than shallow-water taxa, which implies that reserves would need to be larger in size and networks could be more widely spaced; however, this paradigm has not been tested. We compiled population genetic studies of deep-sea fauna and estimated dispersal distances for 51 studies using a method based on isolation-by-distance slopes. Estimates of dispersal distance ranged from 0.24 km to 2028 km with a geometric mean of 33.2 km and differed in relation to taxonomic and life-history factors as well as several study parameters. Dispersal distances were generally greater for fishes than invertebrates with the Mollusca being the least dispersive sampled phylum. Species that are pelagic as adults were more dispersive than those with sessile or sedentary lifestyles. Benthic species from soft-substrate habitats were generally less dispersive than species from hard substrate, demersal or pelagic habitats. As expected, species with pelagic and/or feeding (planktotrophic) larvae were more dispersive than other larval types. Many of these comparisons were confounded by taxonomic or other life-history differences (e.g. fishes being more dispersive than invertebrates) making any simple interpretation difficult. Our results provide the first rough estimate of the range of dispersal distances in the deep sea and allow comparisons to shallow-water assemblages. Overall, dispersal distances were greater for deeper taxa, although the differences were not large (0.3-0.6 orders of magnitude between means), and imbalanced sampling of shallow and deep taxa complicates any simple interpretation. Our analyses suggest the scales of dispersal and connectivity for reserve design in the deep sea might be comparable to or slightly larger than those in shallow water. Deep-sea reserve design will need to consider the enormous variety of taxa, life histories, hydrodynamics, spatial configuration of habitats and patterns of species distributions. The many caveats of our analyses provide a strong impetus for substantial future efforts to assess connectivity of deep-sea species from a variety of habitats, taxonomic groups and depth zones.

100 citations

Journal ArticleDOI
TL;DR: An 18‐month field survey of the Pseudo‐nitzschia population present in Louisiana coastal waters was conducted comparing species abundance estimates by novel fluorescent molecular probes with traditional electron and differential‐interference light microscopy, finding discrepancies appear to be because of genetic variation within the pseudodelicatissima population.
Abstract: An 18-month field survey of the Pseudo-nitzschia population present in Louisiana coastal waters was conducted comparing species abundance estimates by novel fluorescent molecular probes (16S large subunit rDNA oligonucleotide sequences) with traditional electron and differential-interference light microscopy While the probe and microscopic analyses agreed on the presence or absence of four common Pseudo-nitzschia species (P multiseries (Hasle) Hasle, P pseudodelicatissima (Hasle) Hasle, P delicatissima (PT Cleve) Heiden, and P pungens (Grunow) Hasle in 66% of the samples analyzed, the probes gave conflicting results with the microscopic methods in the remaining 34% of the samples The majority of the discrepancies appear to be because of genetic variation within the Pseudo-nitzschia population, especially in P pseudodelicatissima, indicating that the Monterey Bay Pseudo-nitzschia spp may not be appropriate reference strains for distinguishing Louisiana Pseudo-nitzschia spp Additionally, P pseudodelicatissima has been associated with domoic acid (DA) activity in three field samples, at levels up to 22 times higher than the highest value given inother published reports of DA production by this species The contemporaneous existence of multiple strains of P pseudodelicatissima (toxic and non-toxic) presents new challenges to the study of the ecophysiology and population dynamics of this bloom-forming species

100 citations

Journal ArticleDOI
TL;DR: These reporting requirements should guide and support the standardised annotation, dissemination and interpretation of environmental metabolomics meta-data.
Abstract: Metabolomic technologies are increasingly being applied to study biological questions in a range of different settings from clinical through to environmental. As with other high-throughput technologies, such as those used in transcriptomics and proteomics, metabolomics continues to generate large volumes of complex data that necessitates computational management. Making sense of this wealth of information also requires access to sufficiently detailed and well annotated meta-data. Here we provide standard reporting requirements for describing biological samples, taken from an environmental context and involved in metabolomic experiments. It is our intention that these reporting requirements should guide and support the standardised annotation, dissemination and interpretation of environmental metabolomics meta-data.

100 citations


Authors

Showing all 501 results

Network Information
Related Institutions (5)
IFREMER
12.3K papers, 468.8K citations

88% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

86% related

Environment Canada
8.3K papers, 410.9K citations

84% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

84% related

National Marine Fisheries Service
7K papers, 305K citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20222
202129
202017
201917
201831
201719