Institution

# National Physical Laboratory

Facility•London, United Kingdom•

About: National Physical Laboratory is a(n) facility organization based out in London, United Kingdom. It is known for research contribution in the topic(s): Dielectric & Thin film. The organization has 7615 authors who have published 13327 publication(s) receiving 319381 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, a compilation of all published measurements of electron inelastic mean free path lengths in solids for energies in the range 0-10 000 eV above the Fermi level is presented.

Abstract: A compilation is presented of all published measurements of electron inelastic mean free path lengths in solids for energies in the range 0–10 000 eV above the Fermi level. For analysis, the materials are grouped under one of the headings: element, inorganic compound, organic compound and adsorbed gas, with the path lengths each time expressed in nanometers, monolayers and milligrams per square metre. The path lengths are vary high at low energies, fall to 0.1–0.8 nm for energies in the range 30–100 eV and then rise again as the energy increases further. For elements and inorganic compounds the scatter about a ‘universal curve’ is least when the path lengths are expressed in monolayers, λm. Analysis of the inter-element and inter-compound effects shows that λm is related to atom size and the most accuratae relations are λm = 538E−2+0.41(aE)1/2 for elements and λm=2170E−2+0.72(aE)1/2 for inorganic compounds, where a is the monolayer thickness (nm) and E is the electron energy above the Fermi level in eV. For organic compounds λd=49E−2+0.11E1/2 mgm−2. Published general theoretical predictions for λ, valid above 150 eV, do not show as good correlations with the experimental data as the above relations.

4,300 citations

••

TL;DR: In this article, the authors present the data for the condensed phases of 78 elements as currently used by SGTE (Scientific Group Thermodata Europe) as a sound basis for the critical assessment of thermodynamic data, thereby, perhaps, limiting unnecessary duplication of effort.

Abstract: Thermodynamic data for the condensed phases of 78 elements as currently used by SGTE (Scientific Group Thermodata Europe) are tabulated. SGTE is a consortium of seven organisations in Western Europe engaged in the compilation of a comprehensive, self consistent and authoritative thermochemical database for inorganic and metallurgical systems. The data are being published here in the hope that they will become widely adopted within the international community as a sound basis for the critical assessment of thermodynamic data, thereby, perhaps, limiting unnecessary duplication of effort. The data for each phase of each element considered aie presented as expressions showing, as a function of temperature, the variation of (a) G-HSER, the Gibbs energy relative to the enthalpy of the “Standard Element Reference” ie the reference phase for the element at 298.15 K and (b) the difference in Gibbs energy between each phase and this reference phase (ie lattice stability). The variation of the heat capacity of the various phases and the Gibbs energy difference between phases are also shown graphically. For certain elements the thermodynamic data have been assessed as a function of pressure as well as temperature. Where appropriate a temperature— pressure phase diagram is also shown.
Throughout this paper the thermodynamic data are expressed in terms of J mol−1. The temperatures of transition between phases have been assessed to be consistent with the 1990 International Temperature Scale (ITS90).

3,775 citations

••

TL;DR: In this paper, an analysis of the effect of orientation of the fibres on the stiffness and strength of paper and other fibrous materials is made, and the results of the analysis are applied to certain samples of resin bonded fibrous filled materials and moderately good agreement with experimental results is found.

Abstract: An analysis is made of the effect of orientation of the fibres on the stiffness and strength of paper and other fibrous materials. It is shown that these effects may be represented completely by the first few coefficients of the distribution function for the fibres in respect of orientation, the first three Fourier coefficients for a planar matrix and the first fifteen spherical harmonics for a solid medium. For the planar case it is shown that all possible types of elastic behaviour may be represented by composition of four sets of parallel fibres in appropriate ratios. The means of transfer of load from fibre to fibre are considered and it is concluded that the effect of short fibres may be represented merely by use of a reduced value for their modulus of elasticity. The results of the analysis are applied to certain samples of resin bonded fibrous filled materials and moderately good agreement with experimental results is found.

3,100 citations

••

TL;DR: A new algorithm is introduced that attains efficiency by inferentially eliminating successor nodes in the tree search by means of a brute-force tree-search enumeration procedure and a parallel asynchronous logic-in-memory implementation of a vital part of the algorithm is described.

Abstract: Subgraph isomorphism can be determined by means of a brute-force tree-search enumeration procedure. In this paper a new algorithm is introduced that attains efficiency by inferentially eliminating successor nodes in the tree search. To assess the time actually taken by the new algorithm, subgraph isomorphism, clique detection, graph isomorphism, and directed graph isomorphism experiments have been carried out with random and with various nonrandom graphs. A parallel asynchronous logic-in-memory implementation of a vital part of the algorithm is also described, although this hardware has not actually been built. The hardware implementation would allow very rapid determination of isomorphism.

2,160 citations

••

TL;DR: In this article, the authors investigated the acoustical properties of a range of fibrous absorbent materials and showed that the characteristic impedance and propagation coefficient of these materials normalize as a function of frequency divided by flow-resistance.

Abstract: Results are presented of an investigation into the acoustical properties of a range of fibrous absorbent materials. Measured values of characteristic impedance and propagation coefficient are shown to normalise as a function of frequency divided by flow-resistance and can be represented by simple power-law functions. Absorption coefficients of thin layers of material over a range of flow-resistance values are also shown. Supplementary data provide a basis for estimating the flow-resistance of a material from its bulk density.

1,530 citations

##### Authors

Showing all 7615 results

Name | H-index | Papers | Citations |
---|---|---|---|

Rajesh Kumar | 149 | 4439 | 140830 |

Akhilesh Pandey | 100 | 529 | 53741 |

A. S. Bell | 90 | 305 | 61177 |

David R. Clarke | 90 | 553 | 36039 |

Praveen Kumar | 88 | 1339 | 35718 |

Richard C. Thompson | 87 | 380 | 45702 |

Xin-She Yang | 85 | 444 | 61136 |

Andrew J. Pollard | 79 | 673 | 26295 |

Krishnendu Chakrabarty | 79 | 996 | 27583 |

Vinod Kumar | 77 | 815 | 26882 |

Bansi D. Malhotra | 75 | 375 | 19419 |

Matthew Hall | 75 | 827 | 24352 |

Sanjay K. Srivastava | 73 | 366 | 15587 |

Michael Jones | 72 | 331 | 18889 |

Sanjay Singh | 71 | 1133 | 22099 |