scispace - formally typeset
Search or ask a question

Showing papers by "National Physical Laboratory published in 2017"


Journal ArticleDOI
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as discussed by the authors provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

1,068 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify and characterize soliton crystals through analysis of their fingerprint optical spectra, which arise from spectral interference between the solitons, and perform time-domain measurements to directly confirm their inference of their crystal structure.
Abstract: Self-organized solitons confined to an optical resonator would offer unique capabilities for experiments in communication, computation and sensing with light. Here, we report the observation of soliton crystals in monolithic Kerr microresonators—spontaneously and collectively ordered ensembles of co-propagating solitons whose interactions discretize their allowed temporal separations. We unambiguously identify and characterize soliton crystals through analysis of their ‘fingerprint’ optical spectra, which arise from spectral interference between the solitons. We identify a rich space of soliton crystals exhibiting crystallographic defects and we perform time-domain measurements to directly confirm our inference of their crystal structure. Soliton crystallization is explained by long-range soliton interactions mediated by resonator mode degeneracies, and we probe the qualitative difference between soliton crystals and the disorganized soliton liquid that would form in the absence of these interactions. Our work explores the physics of monolithic Kerr resonators in a regime of dense soliton occupation and offers a way to increase the efficiency of Kerr combs. Furthermore, the extreme degeneracy of the configuration space of soliton crystals suggests an implementation for an on-chip optical buffer. The observation of soliton crystals in monolithic Kerr microresonators is reported. The physics of such resonators is explored in a regime of dense soliton occupation, offering a way to increase the efficiency of Kerr combs.

321 citations


Journal ArticleDOI
TL;DR: It is shown that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level, and the extremely high gain leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses.
Abstract: Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr−1, and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm−1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr−1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.

265 citations


Journal ArticleDOI
TL;DR: The development of a 3D OrbiSIMS instrument for label-free biomedical imaging and single-cell metabolomic profiling are reported, and it is observed that the upregulation of phospholipid species and cholesterol is correlated with the accumulation of amiodarone.
Abstract: We report the development of a 3D OrbiSIMS instrument for label-free biomedical imaging. It combines the high spatial resolution of secondary ion mass spectrometry (SIMS; under 200 nm for inorganic species and under 2 μm for biomolecules) with the high mass-resolving power of an Orbitrap (>240,000 at m/z 200). This allows exogenous and endogenous metabolites to be visualized in 3D with subcellular resolution. We imaged the distribution of neurotransmitters-gamma-aminobutyric acid, dopamine and serotonin-with high spectroscopic confidence in the mouse hippocampus. We also putatively annotated and mapped the subcellular localization of 29 sulfoglycosphingolipids and 45 glycerophospholipids, and we confirmed lipid identities with tandem mass spectrometry. We demonstrated single-cell metabolomic profiling using rat alveolar macrophage cells incubated with different concentrations of the drug amiodarone, and we observed that the upregulation of phospholipid species and cholesterol is correlated with the accumulation of amiodarone.

258 citations


Journal ArticleDOI
TL;DR: In this article, the authors review their experience of TLS sampling strategies from 27 campaigns conducted over the past 5 years, across tropical and temperate forest plots, where data was captured with a RIEGL VZ-400 laser scanner.

220 citations


Journal ArticleDOI
TL;DR: A multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2 and highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS 2.
Abstract: Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2.

215 citations


Journal ArticleDOI
TL;DR: This review reviews charge transport across molecular monolayers, which is central to molecular electronics (MolEl), using large-area junctions (NmJ), and points to creation of a built-in electric field as a key to achieve functionality, including nonlinear current-voltage characteristics that originate in the molecules or their contacts to the electrodes.
Abstract: We review charge transport across molecular monolayers, which is central to molecular electronics (MolEl), using large-area junctions (NmJ). We strive to provide a wide conceptual overview of three main subtopics. First, a broad introduction places NmJ in perspective to related fields of research and to single-molecule junctions (1mJ) in addition to a brief historical account. As charge transport presents an ultrasensitive probe for the electronic perfection of interfaces, in the second part ways to form both the monolayer and the contacts are described to construct reliable, defect-free interfaces. The last part is dedicated to understanding and analyses of current–voltage (I–V) traces across molecular junctions. Notwithstanding the original motivation of MolEl, I–V traces are often not very sensitive to molecular details and then provide a poor probe for chemical information. Instead, we focus on how to analyze the net electrical performance of molecular junctions, from a functional device perspective. ...

208 citations


Journal ArticleDOI
TL;DR: This work obtains a constraint on the Robertson-Mansouri-Sexl parameter |α|≲1.1×10^{-8}, quantifying a violation of time dilation, thus improving by a factor of around 2 the best known constraint obtained with Ives-Stilwell type experiments.
Abstract: Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson–Mansouri–Sexl parameter |α| 1.1 × 10 −8 quantifying a violation of time dilation, thus improving by a factor of around two the best known constraint obtained with Ives–Stilwell type experiments, and by two orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this paper will improve by orders of magnitude in the near future.

182 citations


Journal ArticleDOI
TL;DR: A review of the current state of the field is provided, highlighting the potential underlying biological mechanisms in GNP radiosensitization and examining the barriers to clinical translation.
Abstract: There has been growing interest in the use of nanomaterials for a range of biomedical applications over the last number of years. In particular, gold nanoparticles (GNPs) possess a number of unique properties that make them ideal candidates as radiosensitizers on the basis of their strong photoelectric absorption coefficient and ease of synthesis. However, despite promising preclinical evidence in vitro supported by a limited amount of in vivo experiments, along with advances in mechanistic understanding, GNPs have not yet translated into the clinic. This may be due to disparity between predicted levels of radiosensitization based on physical action, observed biological response and an incomplete mechanistic understanding, alongside current experimental limitations. This paper provides a review of the current state of the field, highlighting the potential underlying biological mechanisms in GNP radiosensitization and examining the barriers to clinical translation.

177 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a method to estimate AGB of large tropical trees by 3D tree modeling of TLS point clouds, which can account for individual tree biophysical structure more effectively than allometric models.
Abstract: 1. Tropical forest biomass is a crucial component of global carbon emission estimations. However, calibration and validation of such estimates require accurate and effective methods to estimate in situ above-ground biomass (AGB). Present methods rely on allometric models that are highly uncertain for large tropical trees. Terrestrial laser scanning (TLS) tree modelling has demonstrated to be more accurate than these models to infer forest AGB. Nevertheless, applying TLS methods on tropical large trees is still challenging. We propose a method to estimate AGB of large tropical trees by three-dimensional (3D) tree modelling of TLS point clouds. 2. Twenty-nine plots were scanned with a TLS in three study sites (Peru, Indonesia and Guyana). We identified the largest tree per plot (mean diameter at breast height of 73.5 cm), extracted its point cloud and calculated its volume by 3D modelling its structure using quantitative structure models (QSM) and converted to AGB using species-specific wood density. We also estimated AGB using pantropical and local allometric models. To assess the accuracy of our and allometric methods, we harvest the trees and took destructive measurements. 3. AGB estimates by the TLS–QSM method showed the best agreement in comparison to destructive harvest measurements (28.37% coefficient of variation of root mean square error [CV-RMSE] and concordance correlation coefficient [CCC] of 0.95), outperforming the pantropical allometric models tested (35.6%–54.95% CV-RMSE and CCC of 0.89–0.73). TLS–QSM showed also the lowest bias (overall underestimation of 3.7%) and stability across tree size range, contrasting with the allometric models that showed a systematic bias (overall underestimation ranging 15.2%–35.7%) increasing linearly with tree size. The TLS–QSM method also provided accurate tree wood volume estimates (CV RMSE of 23.7%) with no systematic bias regardless the tree structural characteristics. 4. Our TLS–QSM method accounts for individual tree biophysical structure more effectively than allometric models, providing more accurate and less biased AGB estimates for large tropical trees, independently of their morphology. This non-destructive method can be further used for testing and calibrating new allometric models, reducing the current under-representation of large trees in and enhancing present and past estimates of forest biomass and carbon emissions from tropical forests.

173 citations


Journal ArticleDOI
TL;DR: In this paper, an internal short circuiting device was used for controlled, on-demand, initiation of thermal runaway in lithium-ion batteries, allowing analysis of the nucleation and propagation of failure within 18 650 cells through the use of high-speed X-ray imaging at 2000 frames per second.
Abstract: Lithium-ion batteries are being used in increasingly demanding applications where safety and reliability are of utmost importance. Thermal runaway presents the greatest safety hazard, and needs to be fully understood in order to progress towards safer cell and battery designs. Here, we demonstrate the application of an internal short circuiting device for controlled, on-demand, initiation of thermal runaway. Through its use, the location and timing of thermal runaway initiation is pre-determined, allowing analysis of the nucleation and propagation of failure within 18 650 cells through the use of high-speed X-ray imaging at 2000 frames per second. The cause of unfavourable occurrences such as sidewall rupture, cell bursting, and cell-to-cell propagation within modules is elucidated, and steps towards improved safety of 18 650 cells and batteries are discussed.

Journal ArticleDOI
TL;DR: Nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators are demonstrated and pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors.
Abstract: Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors.

Journal ArticleDOI
TL;DR: In this article, the effect of copper acetate concentration and the functional properties of nanocomposites was investigated and the synergistic photocatalytic mechanism was proposed based on the photodegradation results.

Journal ArticleDOI
06 Sep 2017
TL;DR: In this article, the authors provide a comprehensive overview of the issues that need to be addressed by any large-area characterisation method for electrical key performance indicators, with emphasis on electrical uniformity and on how this can be used to provide a more accurate analysis of the graphene film.
Abstract: The significant progress in terms of fabricating large-area graphene films for transparent electrodes, barriers, electronics, telecommunication and other applications has not yet been accompanied by efficient methods for characterizing the electrical properties of large-area graphene. While in the early prototyping as well as research and development phases, electrical test devices created by conventional lithography have provided adequate insights, this approach is becoming increasingly problematic due to complications such as irreversible damage to the original graphene film, contamination, and a high measurement effort per device. In this topical review, we provide a comprehensive overview of the issues that need to be addressed by any large-area characterisation method for electrical key performance indicators, with emphasis on electrical uniformity and on how this can be used to provide a more accurate analysis of the graphene film. We review and compare three different, but complementary approaches that rely either on fixed contacts (dry laser lithography), movable contacts (micro four point probes) and non-contact (terahertz timedomain spectroscopy) between the probe and the graphene film, all of which have been optimized for maximal throughput and accuracy, and minimal damage to the graphene film. Of these three, the main emphasis is on THz time-domain spectroscopy, which is non-destructive, highly accurate and allows both conductivity, carrier density and carrier mobility to be mapped across arbitrarily large areas at rates that by far exceed any other known method. We also detail how the THz conductivity spectra give insights on the scattering mechanisms, and through that, the microstructure of graphene films subject to different growth and transfer processes. The perspectives for upscaling to realistic production environments are discussed. TOPICAL REVIEW 2017 Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. RECEIVED

Journal ArticleDOI
TL;DR: DECT has a clear potential to improve proton beam range predictions over SECT in proton therapy, but in the current state high levels of noise remain problematic for DECT characterization methods and do not allow getting the full benefits of this technology.
Abstract: PURPOSE: Dual‐energy CT (DECT) promises improvements in estimating stopping power ratios (SPRs) for proton therapy treatment planning. Although several comparable mathematical formalisms have been proposed in literature, the optimal techniques to characterize human tissue SPRs with DECT in a clinical environment are not fully established. The aim of this work is to compare the most robust DECT methods against conventional single‐energy CT (SECT) in conditions reproducing a clinical environment, where CT artifacts and noise play a major role on the accuracy of these techniques.METHODS: Available DECT tissue characterization methods are investigated and their ability to predict SPRs is compared in three contexts: (a) a theoretical environment using the XCOM cross section database; (b) experimental data using a dual‐source CT scanner on a calibration phantom; (c) simulations of a virtual humanoid phantom with the ImaSim software. The latter comparison accounts for uncertainties caused by CT artifacts and noise, but leaves aside other sources of uncertainties such as CT grid size and the I‐values. To evaluate the clinical impact, a beam range calculation model is used to predict errors from the probability distribution functions determined with ImaSim simulations. Range errors caused by SPR errors in soft tissues and bones are investigated. RESULTS: Range error estimations demonstrate that DECT has the potential of reducing proton beam range uncertainties by 0.4% in soft tissues using low noise levels of 12 and 8 HU in DECT, corresponding to 7 HU in SECT. For range uncertainties caused by the transport of protons through bones, the reduction in range uncertainties for the same levels of noise is found to be up to 0.6 to 1.1 mm for bone thicknesses ranging from 1 to 5 cm, respectively. We also show that for double the amount noise, i.e., 14 HU in SECT and 24 and 16 HU for DECT, the advantages of DECT in soft tissues are lost over SECT. In bones however, the reduction in range uncertainties is found to be between 0.5 and 0.9 mm for bone thicknesses ranging from 1 to 5 cm, respectively. CONCLUSION: DECT has a clear potential to improve proton beam range predictions over SECT in proton therapy. However, in the current state high levels of noise remain problematic for DECT characterization methods and do not allow getting the full benefits of this technology. Future work should focus on adapting DECT methods to noise and investigate methods based on raw‐data to reduce CT artifacts.

Journal ArticleDOI
TL;DR: In this paper, a superficial thermal evaporation method has been employed for the fabrication of hierarchical zinc oxide (ZnO) nanostructured films, composed of nanorods (NR's) and bunch of nanowires (BNW's), on glass substrate and the diverse atmospheric annealing effect on their structural, morphological, compositional, and gas sensing properties has been systematically studied and reported.
Abstract: A superficial thermal evaporation method has been employed for the fabrication of hierarchical zinc oxide (ZnO) nanostructured films, composed of nanorods (NR's) and bunch of nanowires (BNW's), on glass substrate and the diverse atmospheric annealing effect on their structural, morphological, compositional, and gas sensing properties has been systematically studied and reported. Structural investigation corroborates the formation of crystalline hexagonal wurtzite ZnO. The arrays of vertically aligned nanorods and bunch of nanowires of ZnO were observed on the substrate surface. As-prepared ZnO NR's and BNW's are utilized as a sensing material for detection of toxic nitrogen dioxide (NO 2 ). The ZnO sensors exhibit high response to NO 2 along with rapid response and recovery time values @200 °C. In addition, ZnO sensors respond to a very small exposure of NO 2 gas i.e. 1 ppm. Furthermore, the developed sensors attain excellent stability and reproducibility in response. Finally, the interaction of NO 2 gas molecules with hierarchical nanostructured ZnO sensors has successfully been studied and discussed by employing an electrochemical impedance spectroscopy measurement.

Journal ArticleDOI
TL;DR: The results show that hybrid graphene films incorporate both high conductivity and superior electromagnetic shielding comparable to existing ITO shielding modalities, which make these graphene hybrid films highly attractive for transparent EMI shielding.
Abstract: Conducting graphene-based hybrids have attracted considerable attention in recent years for their scientific and technological significance in many applications. In this work, conductive graphene hybrid films, consisting of a metallic network fully encapsulated between monolayer graphene and quartz–glass substrate, were fabricated and characterized for their electromagnetic interference shielding capabilities. Experimental results show that by integration with a metallic network the sheet resistance of graphene was significantly suppressed from 813.27 to 5.53 Ω/sq with an optical transmittance at 91%. Consequently, the microwave shielding effectiveness (SE) exceeded 23.60 dB at the Ku-band and 13.48 dB at the Ka-band. The maximum SE value was 28.91 dB at 12 GHz. Compared with the SE of pristine monolayer graphene (3.46 dB), the SE of graphene hybrid film was enhanced by 25.45 dB (99.7% energy attenuation). At 94% optical transmittance, the sheet resistance was 20.67 Ω/sq and the maximum SE value was 20.86...

Journal ArticleDOI
TL;DR: In this article, the authors reported synthesis of aqueous based gold coated iron oxide nanoparticles to integrate the localized surface plasma resonance (SPR) properties of gold and magnetic properties of iron oxide in a single system.

Journal ArticleDOI
TL;DR: It is argued that CDRs derived from satellite-based Earth observation (EO) should include rigorous uncertainty information to support the application of the data in contexts such as policy, climate modelling, and numerical weather prediction reanalysis.
Abstract: . The question of how to derive and present uncertainty information in climate data records (CDRs) has received sustained attention within the European Space Agency Climate Change Initiative (CCI), a programme to generate CDRs addressing a range of essential climate variables (ECVs) from satellite data. Here, we review the nature, mathematics, practicalities, and communication of uncertainty information in CDRs from Earth observations. This review paper argues that CDRs derived from satellite-based Earth observation (EO) should include rigorous uncertainty information to support the application of the data in contexts such as policy, climate modelling, and numerical weather prediction reanalysis. Uncertainty, error, and quality are distinct concepts, and the case is made that CDR products should follow international metrological norms for presenting quantified uncertainty. As a baseline for good practice, total standard uncertainty should be quantified per datum in a CDR, meaning that uncertainty estimates should clearly discriminate more and less certain data. In this case, flags for data quality should not duplicate uncertainty information, but instead describe complementary information (such as the confidence in the uncertainty estimate provided or indicators of conditions violating the retrieval assumptions). The paper discusses the many sources of error in CDRs, noting that different errors may be correlated across a wide range of timescales and space scales. Error effects that contribute negligibly to the total uncertainty in a single-satellite measurement can be the dominant sources of uncertainty in a CDR on the large space scales and long timescales that are highly relevant for some climate applications. For this reason, identifying and characterizing the relevant sources of uncertainty for CDRs is particularly challenging. The characterization of uncertainty caused by a given error effect involves assessing the magnitude of the effect, the shape of the error distribution, and the propagation of the uncertainty to the geophysical variable in the CDR accounting for its error correlation properties. Uncertainty estimates can and should be validated as part of CDR validation when possible. These principles are quite general, but the approach to providing uncertainty information appropriate to different ECVs is varied, as confirmed by a brief review across different ECVs in the CCI. User requirements for uncertainty information can conflict with each other, and a variety of solutions and compromises are possible. The concept of an ensemble CDR as a simple means of communicating rigorous uncertainty information to users is discussed. Our review concludes by providing eight concrete recommendations for good practice in providing and communicating uncertainty in EO-based climate data records.

Journal ArticleDOI
TL;DR: In this article, the failure mechanisms of 18650 cells punctured at different locations and orientations are characterized with respect to their internal structural degradation, and both their internal and surface temperature, all of which are monitored in real time.
Abstract: Mechanical abuse of lithium-ion batteries is widely used during testing to induce thermal runaway, characterize associated risks, and expose cell and module vulnerabilities. However, the repeatability of puncture or ‘nail penetration’ tests is a key issue as there is often a high degree of variability in the resulting thermal runaway process. In this work, the failure mechanisms of 18650 cells punctured at different locations and orientations are characterized with respect to their internal structural degradation, and both their internal and surface temperature, all of which are monitored in real time. The initiation and propagation of thermal runaway is visualized via high-speed synchrotron X-ray radiography at 2000 frames per second, and the surface and internal temperatures are recorded via infrared imaging and a thermocouple embedded in the tip of the penetrating nail, respectively. The influence of the nail, as well as how and where it penetrates the cell, on the initiation and propagation of thermal runaway is described and the suitability of this test method for representing in-field failures is discussed.

Journal ArticleDOI
TL;DR: In this article, the current state-of-the-art in metal-organic frameworks (MOFs) composite materials and their diverse applications are presented, as well as the advantageous features of MOF composites as a promising avenue for future development.

Journal ArticleDOI
TL;DR: The studies did show that collagen helped shift both drugs into sustained release behaviour, and ideal modifications to electrospun scaffolds may prove useful in further research regarding the acceptance of human tissue by inhibiting the potential for bacterial infection.

Journal ArticleDOI
TL;DR: Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials as discussed by the authors, which can offer a unique insight into the properties of molecular semiconductor materials, including chemical structure, molecular conformation, molecular orientation, and fundamental photo-and electrochemical processes.
Abstract: Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised ?-electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes - all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal, and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights which it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices.

Journal ArticleDOI
TL;DR: A new, more robust sprayer for desorption electrospray ionization (DESI) mass spectrometry imaging is presented, which provides up to 30 times faster DESI acquisition and can still be used to classify tissue types on the basis of a previously constructed model.

Journal ArticleDOI
TL;DR: In this article, the authors present an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions.
Abstract: . We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006–2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2–29.7) Tg CH4 yr−1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006–2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr−1 (2006) to 18.8 Tg CH4 yr−1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3–8.2) Tg CH4 yr−1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon Cycle (IMECC) aircraft campaign. We present a novel approach to estimate the biases in the derived emissions, based on the comparison of simulated and measured enhancements of CH4 compared to the background, integrated over the entire boundary layer and over the lower troposphere. The estimated average regional biases range between −40 and 20 % at the aircraft profile sites in France, Hungary and Poland.

Journal ArticleDOI
TL;DR: This study estimates the losses of wheat and rice crop yields using surface ozone observations from a group of 17 sites, for the first time, covering different parts of India and confirms that AOT40 cannot be fit with a linear relation over the Indian region and suggests for the need of new metrics based on factors suitable for this region.
Abstract: Surface ozone is mainly produced by photochemical reactions involving various anthropogenic pollutants, whose emissions are increasing rapidly in India due to fast-growing anthropogenic activities. This study estimates the losses of wheat and rice crop yields using surface ozone observations from a group of 17 sites, for the first time, covering different parts of India. We used the mean ozone for 7 h during the day (M7) and accumulated ozone over a threshold of 40 ppbv (AOT40) metrics for the calculation of crop losses for the northern, eastern, western and southern regions of India. Our estimates show the highest annual loss of wheat (about 9 million ton) in the northern India, one of the most polluted regions in India, and that of rice (about 2.6 million ton) in the eastern region. The total all India annual loss of 4.0–14.2 million ton (4.2–15.0%) for wheat and 0.3–6.7 million ton (0.3–6.3%) for rice are estimated. The results show lower crop loss for rice than that of wheat mainly due to lower surface ozone levels during the cropping season after the Indian summer monsoon. These estimates based on a network of observation sites show lower losses than earlier estimates based on limited observations and much lower losses compared to global model estimates. However, these losses are slightly higher compared to a regional model estimate. Further, the results show large differences in the loss rates of both the two crops using the M7 and AOT40 metrics. This study also confirms that AOT40 cannot be fit with a linear relation over the Indian region and suggests for the need of new metrics that are based on factors suitable for this region.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +995 moreInstitutions (64)
TL;DR: In this paper, a semicoherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run is presented.
Abstract: Results are presented from a semicoherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run. The search combines a frequency domain matched filter (Bessel-weighted F-statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60–650 Hz. Frequentist 95% confidence strain upper limits, h^(95%)_0 = 4.0 × 10^(−25), 8.3 × 10^(−25), and 3.0 × 10^(−25) for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are ≤ 10 times higher than the theoretical torque-balance limit at 106 Hz.

Journal ArticleDOI
TL;DR: MTDATA as mentioned in this paper is a phase equilibrium software from the National Physical Laboratory (NPL) developed over a period of thirty years based upon modeling work at NPL and funded by industrial partners in a project co-ordinated by MINER.
Abstract: This paper gives an introduction to MTDATA, Phase Equilibrium Software from the National Physical Laboratory (NPL), and describes the latest advances in the development of a comprehensive database of thermodynamic parameters to underpin calculations of phase equilibria in large oxide, sulfide, and fluoride systems of industrial interest. The database, MTOX, has been developed over a period of thirty years based upon modeling work at NPL and funded by industrial partners in a project co-ordinated by Mineral Industry Research Organisation. Applications drawn from the fields of modern copper scrap smelting, high-temperature behavior of basic oxygen steelmaking slags, flash smelting of nickel, electric furnace smelting of ilmenite, and production of pure TiO2via a low-temperature molten salt route are discussed along with calculations to assess the impact of impurities on the uncertainty of fixed points used to realize the SI unit of temperature, the kelvin.

Journal ArticleDOI
TL;DR: These findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices, which has been an issue of interest for several decades.
Abstract: An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al2O3. We measure a spin density of 2.2×1017 spins/m2, attributed to physisorbed atomic hydrogen and S=1/2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices.

Journal ArticleDOI
TL;DR: A peptide topology is presented that mimics virus architecture and assembles into antimicrobial capsids that disrupt bacterial membranes upon contact that destroy bacteria on contact.
Abstract: The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact.