scispace - formally typeset
Search or ask a question
Institution

National Physical Laboratory

FacilityLondon, United Kingdom
About: National Physical Laboratory is a facility organization based out in London, United Kingdom. It is known for research contribution in the topics: Dielectric & Thin film. The organization has 7615 authors who have published 13327 publications receiving 319381 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This joint IAEA/AAPM CoP will ensure consistent reference dosimetry traceable to the international System of Units and enable common and internationally harmonized procedures to be followed by radiotherapy centers worldwide for the dosimetric of small static megavoltage photon fields.
Abstract: PURPOSE A joint IAEA/AAPM international working group has developed a Code of Practice (CoP) for the dosimetry of small static fields used in external megavoltage photon beam radiotherapy, published by the IAEA as TRS-483. This summary paper introduces and outlines the main aspects of the CoP. METHODS IAEA TRS-483 is a condensation of the wide range of different approaches that have been described in the literature for the reference dosimetry of radiotherapy machines with nominal accelerating potential up to 10 MV that cannot establish the conventional 10 cm × 10 cm reference field, and for the determination of field output factors for relative dosimetry in small static photon fields. The formalism used is based on that developed by Alfonso et al. [Med Phys. 2008;35:5179-5186] for this modality. RESULTS Three introductory sections describe the rationale and context of the CoP, the clinical use of small photon fields, and the physics of small-field dosimetry. In the fourth section, definitions of terms that are specific to the CoP (as compared to previous CoPs for broad-beam reference dosimetry, such as IAEA TRS-398 and AAPM TG-51) are given; this section includes a list of the symbols and equivalences between IAEA and AAPM nomenclature to facilitate the practical implementation of the CoP by end users of IAEA TRS-398 and AAPM TG-51. The fifth section summarizes the equations and procedures that are recommended in the CoP and the sixth section provides an overview of the methods used to derive the data provided in IAEA TRS-483. CONCLUSIONS This is the first time an international Code of Practice for the dosimetry of small photon fields based on comprehensive data and correction factors has been published. This joint IAEA/AAPM CoP will ensure consistent reference dosimetry traceable to the international System of Units and enable common and internationally harmonized procedures to be followed by radiotherapy centers worldwide for the dosimetry of small static megavoltage photon fields.

216 citations

Journal ArticleDOI
15 Aug 2013-Nature
TL;DR: Although fluctuations in annual temperature have indeed shown substantial geographical variation over the past few decades, the time-evolving standard deviation of globally averaged temperature anomalies has been stable, contradict the view that a warming world will automatically be one of more overall climatic variation.
Abstract: Evidence from Greenland ice cores shows that year-to-year temperature variability was probably higher in some past cold periods, but there is considerable interest in determining whether global warming is increasing climate variability at present. This interest is motivated by an understanding that increased variability and resulting extreme weather conditions may be more difficult for society to adapt to than altered mean conditions. So far, however, in spite of suggestions of increased variability, there is considerable uncertainty as to whether it is occurring. Here we show that although fluctuations in annual temperature have indeed shown substantial geographical variation over the past few decades, the time-evolving standard deviation of globally averaged temperature anomalies has been stable. A feature of the changes has been a tendency for many regions of low variability to experience increases, which might contribute to the perception of increased climate volatility. The normalization of temperature anomalies creates the impression of larger relative overall increases, but our use of absolute values, which we argue is a more appropriate approach, reveals little change. Regionally, greater year-to-year changes recently occurred in much of North America and Europe. Many climate models predict that total variability will ultimately decrease under high greenhouse gas concentrations, possibly associated with reductions in sea-ice cover. Our findings contradict the view that a warming world will automatically be one of more overall climatic variation.

216 citations

Journal ArticleDOI
TL;DR: A multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2 and highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS 2.
Abstract: Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2.

215 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that for the writer's eye the ratio of the luminous efficiencies of rays entering centrally and peripherally varies systematically to a limited extent in passing through the spectrum.
Abstract: It has been found by the writer, in collaboration with B. H. Crawford (1933), that light rays entering the eye pupil near its periphery are less efficient in producing the impression of brightness than rays entering centrally, the patch of retina stimulated (the fovea) being the same in both cases. Reasons were put forward in the paper cited for thinking the effect to be retinal in origin, i. e. due to a variation of visual sensitivity with angle of incidence of the light on the retina, rather than the result of a greater absorption of the peripheral rays in transit through the optic media of the eye. Most of the observations were made with white light and, although the absence of any pronounced coloration of the field illuminated by the peripheral ray indicated that the reduction of apparent brightness could not be very different for different colours, it was considered desirable to test this point directly by observations with monochromatic light throughout the spectrum. In Part I of this paper an investigation on these lines is described from which it appears that for the writer’s eye the ratio of the luminous efficiencies of rays entering centrally and peripherally varies systematically to a limited extent in passing through the spectrum. It was also found that within a considerable range of intensity the value of the ratio for a given wave-length is independent of intensity. Since the publication of the original paper, Dziobek (1934) and Wright and Nelson (1936) have both made measurements confirming the existence of a marked variation of luminous efficiency with point of entry. The latter workers employed white light and coloured lights obtained with the aid of filters. Goodeve (1936) has also measured the effect, in the extreme red.

215 citations

Journal ArticleDOI
TL;DR: In this article, the surface potential (SP) of graphene is directly measured in Hall bar geometry via a combination of electrical functional microscopy and spectroscopy techniques, which enables calibrated work function measurements of graphene domains in ambient conditions with values Φ 1LG ~4.55 ± 0.02
Abstract: We compare the three most commonly used scanning probe techniques to obtain a reliable value of the work function in graphene domains of different thickness. The surface potential (SP) of graphene is directly measured in Hall bar geometry via a combination of electrical functional microscopy and spectroscopy techniques, which enables calibrated work function measurements of graphene domains in ambient conditions with values Φ1LG ~4.55 ± 0.02 eV and Φ2LG ~ 4.44 ± 0.02 eV for single- and bi-layer, respectively. We demonstrate that frequency-modulated Kelvin probe force microscopy (FM-KPFM) provides more accurate measurement of the SP than amplitude-modulated (AM)-KPFM. The discrepancy between experimental results obtained by different techniques is discussed. In addition, we use FM-KPFM for contactless measurements of the specific components of the device resistance. We show a strong non-Ohmic behavior of the electrode-graphene contact resistance and extract the graphene channel resistivity.

215 citations


Authors

Showing all 7655 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Akhilesh Pandey10052953741
A. S. Bell9030561177
David R. Clarke9055336039
Praveen Kumar88133935718
Richard C. Thompson8738045702
Xin-She Yang8544461136
Andrew J. Pollard7967326295
Krishnendu Chakrabarty7999627583
Vinod Kumar7781526882
Bansi D. Malhotra7537519419
Matthew Hall7582724352
Sanjay K. Srivastava7336615587
Michael Jones7233118889
Sanjay Singh71113322099
Network Information
Related Institutions (5)
National Institute of Standards and Technology
60.6K papers, 2.2M citations

90% related

National Research Council
76K papers, 2.4M citations

89% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

88% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Argonne National Laboratory
64.3K papers, 2.4M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202242
2021356
2020438
2019434
2018406