scispace - formally typeset
Search or ask a question
Institution

National Physical Laboratory

FacilityLondon, United Kingdom
About: National Physical Laboratory is a facility organization based out in London, United Kingdom. It is known for research contribution in the topics: Dielectric & Thin film. The organization has 7615 authors who have published 13327 publications receiving 319381 citations.


Papers
More filters
Journal ArticleDOI
21 Jun 2016-Forests
TL;DR: In this paper, a hand-held mobile laser scanner (HMLS) was compared with two TLS approaches (single scan: SS, and multi scan: MS) for the estimation of several forest parameters in a wide range of forest types and structures.
Abstract: The application of static terrestrial laser scanning (TLS) in forest inventories is becoming more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract forest attributes. The use of a mobile laser scanner (MLS) would reduce this occlusion. In this study, we assessed and compared a hand-held mobile laser scanner (HMLS) with two TLS approaches (single scan: SS, and multi scan: MS) for the estimation of several forest parameters in a wide range of forest types and structures. We found that SS is competitive to extract the ground surface of forest plots, while MS gives the best result to describe the upper part of the canopy. The whole cross-section at 1.3 m height is scanned for 91% of the trees (DBH > 10 cm) with the HMLS leading to the best results for DBH estimates (bias of 0.08 cm and RMSE of 1.11 cm), compared to no fully-scanned trees for SS and 42% fully-scanned trees for MS. Irregularities, such as bark roughness and non-circular cross-section may explain the negative bias encountered for all of the scanning approaches. The success of using MLS in forests will allow for 3D structure acquisition on a larger scale and in a time-efficient manner.

208 citations

Journal ArticleDOI
TL;DR: This review reviews charge transport across molecular monolayers, which is central to molecular electronics (MolEl), using large-area junctions (NmJ), and points to creation of a built-in electric field as a key to achieve functionality, including nonlinear current-voltage characteristics that originate in the molecules or their contacts to the electrodes.
Abstract: We review charge transport across molecular monolayers, which is central to molecular electronics (MolEl), using large-area junctions (NmJ). We strive to provide a wide conceptual overview of three main subtopics. First, a broad introduction places NmJ in perspective to related fields of research and to single-molecule junctions (1mJ) in addition to a brief historical account. As charge transport presents an ultrasensitive probe for the electronic perfection of interfaces, in the second part ways to form both the monolayer and the contacts are described to construct reliable, defect-free interfaces. The last part is dedicated to understanding and analyses of current–voltage (I–V) traces across molecular junctions. Notwithstanding the original motivation of MolEl, I–V traces are often not very sensitive to molecular details and then provide a poor probe for chemical information. Instead, we focus on how to analyze the net electrical performance of molecular junctions, from a functional device perspective. ...

208 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the stability of inviscid shear flows, consisting of a non-zero mean component, together with a component periodic in the direction of flow and with time, and found that the periodic component can serve as a means by which waves with twice the wavelength of the periodic components can be reinforced.
Abstract: In experiments concerning the instability of free shear layers, oscillations have been observed in the downstream flow which have a frequency exactly half that of the dominant oscillation closer to the origin of the layer. The present analysis indicates that the phenomenon is due to a secondary instability associated with the nearly periodic flow which arises from the finite-amplitude growth of the fundamental disturbance.At first, however, the stability of inviscid shear flows, consisting of a non-zero mean component, together with a component periodic in the direction of flow and with time, is investigated fairly generally. It is found that the periodic component can serve as a means by which waves with twice the wavelength of the periodic component can be reinforced. The dependence of the growth rate of the subharmonic wave upon the amplitude of the periodic component is found for the case when the mean flow profile is of the hyperbolic-tangent type. In order that the subharmonic growth rate may exceed that of the most unstable disturbance associated with the mean flow, the amplitude of the streamwise component of the periodic flow is required to be about 12 % of the mean velocity difference across the shear layer. This represents order-of-magnitude agreement with experiment.Other possibilities of interaction between disturbances and the periodic flow are discussed, and the concluding section contains a discussion of the interactions on the basis of the energy equation.

207 citations

Journal ArticleDOI
TL;DR: In this article, a single tracking interferometer is used for the mapping of geometric errors of machine tools and coordinate measuring machines by using displacement measurements between reference points that are fixed to the base and offset points fixed to a machine head.

204 citations


Authors

Showing all 7655 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Akhilesh Pandey10052953741
A. S. Bell9030561177
David R. Clarke9055336039
Praveen Kumar88133935718
Richard C. Thompson8738045702
Xin-She Yang8544461136
Andrew J. Pollard7967326295
Krishnendu Chakrabarty7999627583
Vinod Kumar7781526882
Bansi D. Malhotra7537519419
Matthew Hall7582724352
Sanjay K. Srivastava7336615587
Michael Jones7233118889
Sanjay Singh71113322099
Network Information
Related Institutions (5)
National Institute of Standards and Technology
60.6K papers, 2.2M citations

90% related

National Research Council
76K papers, 2.4M citations

89% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

88% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Argonne National Laboratory
64.3K papers, 2.4M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202242
2021356
2020438
2019434
2018406