scispace - formally typeset
Search or ask a question
Institution

National Physical Laboratory

FacilityLondon, United Kingdom
About: National Physical Laboratory is a facility organization based out in London, United Kingdom. It is known for research contribution in the topics: Dielectric & Thin film. The organization has 7615 authors who have published 13327 publications receiving 319381 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, Ni-and/or Al-doped and undoped SnO2 thick film gas sensors were prepared using screen printing technique and tested for their LPG gas sensitivity.
Abstract: Ni- and/or Al-doped and undoped SnO2 thick film gas sensors were prepared using screen printing technique and tested for their LPG gas sensitivity. Tin oxide powder was prepared using a chemical precipitation technique. The sensitivity, optimum working temperature and response time were investigated in relation to dopants as well as preparation route. The results show that the gas sensitivity is affected not only by the additive but the way it is added into the sensor material. The results indicated a reduction in grain size on Al and Ni doping. The results on resistance, response and recovery time were explained in terms of n–p junction formation between SnO2 and NiO, which increases the depletion barrier height.

167 citations

Journal ArticleDOI
TL;DR: A new algorithm is described for indefinite quadratic programming which utilizes methods for updating positivedefinite factorizations only and can be used for the positive-definite case without loss of efficiency.
Abstract: Numerically stable algorithms for quadratic programming are discussed. A new algorithm is described for indefinite quadratic programming which utilizes methods for updating positivedefinite factorizations only. Consequently all the updating procedures required are common to algorithms for linearly-constrained optimization. The new algorithm can be used for the positive-definite case without loss of efficiency.

166 citations

Journal ArticleDOI
TL;DR: Magnetic force microscopy (MFM) has become a truly widespread and commonly used characterization technique that has been applied to a variety of research and industrial applications as discussed by the authors, where the main advantages of the method include its high spatial resolution (typically ∼50 nm), ability to work in variable temperature and applied magnetic fields, versatility, and simplicity in operation, all without almost any need for sample preparation.
Abstract: Since it was first demonstrated in 1987, magnetic force microscopy (MFM) has become a truly widespread and commonly used characterization technique that has been applied to a variety of research and industrial applications. Some of the main advantages of the method includes its high spatial resolution (typically ∼50 nm), ability to work in variable temperature and applied magnetic fields, versatility, and simplicity in operation, all without almost any need for sample preparation. However, for most commercial systems, the technique has historically provided only qualitative information, and the number of available modes was typically limited, thus not reflecting the experimental demands. Additionally, the range of samples under study was largely restricted to “classic” ferromagnetic samples (typically, thin films or patterned nanostructures). Throughout this Perspective article, the recent progress and development of MFM is described, followed by a summary of the current state-of-the-art techniques and objects for study. Finally, the future of this fascinating field is discussed in the context of emerging instrumental and material developments. Aspects including quantitative MFM, the accurate interpretation of the MFM images, new instrumentation, probe-engineering alternatives, and applications of MFM to new (often interdisciplinary) areas of the materials science, physics, and biology will be discussed. We first describe the physical principles of MFM, specifically paying attention to common artifacts frequently occurring in MFM measurements; then, we present a comprehensive review of the recent developments in the MFM modes, instrumentation, and the main application areas; finally, the importance of the technique is speculated upon for emerging or anticipated to emerge fields including skyrmions, 2D-materials, and topological insulators.

166 citations

Journal ArticleDOI
TL;DR: CH4 emission estimates were found to be about 0.12Gg in Chennai from municipal solid waste management for the year 2000 which is lower than the value computed using IPCC, 1996 [IPCC, 1996] methodologies.

166 citations


Authors

Showing all 7655 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Akhilesh Pandey10052953741
A. S. Bell9030561177
David R. Clarke9055336039
Praveen Kumar88133935718
Richard C. Thompson8738045702
Xin-She Yang8544461136
Andrew J. Pollard7967326295
Krishnendu Chakrabarty7999627583
Vinod Kumar7781526882
Bansi D. Malhotra7537519419
Matthew Hall7582724352
Sanjay K. Srivastava7336615587
Michael Jones7233118889
Sanjay Singh71113322099
Network Information
Related Institutions (5)
National Institute of Standards and Technology
60.6K papers, 2.2M citations

90% related

National Research Council
76K papers, 2.4M citations

89% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

88% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Argonne National Laboratory
64.3K papers, 2.4M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202242
2021356
2020438
2019434
2018406