Institution
National Renewable Energy Laboratory
Facility•Golden, Colorado, United States•
About: National Renewable Energy Laboratory is a facility organization based out in Golden, Colorado, United States. It is known for research contribution in the topics: Wind power & Photovoltaic system. The organization has 5436 authors who have published 14851 publications receiving 663296 citations. The organization is also known as: The National Renewable Energy Laboratory & Solar Energy Research Institute.
Topics: Wind power, Photovoltaic system, Renewable energy, Thin film, Solar cell
Papers published on a yearly basis
Papers
More filters
TL;DR: This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods and concludes that pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass.
Abstract: Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose. These methods cause physical and/or chemical changes in the plant biomass in order to achieve this result. Experimental investigation of physical changes and chemical reactions that occur during pretreatment is required for the development of effective and mechanistic models that can be used for the rational design of pretreatment processes. Furthermore, pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass. This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods.
6,110 citations
TL;DR: In this article, the authors report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene.
Abstract: Converting solar energy into electricity provides a much-needed solution to the energy crisis the world is facing today. Polymer solar cells have shown potential to harness solar energy in a cost-effective way. Significant efforts are underway to improve their efficiency to the level of practical applications. Here, we report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene. Controlling the active layer growth rate results in an increased hole mobility and balanced charge transport. Together with increased absorption in the active layer, this results in much-improved device performance, particularly in external quantum efficiency. The power-conversion efficiency of 4.4% achieved here is the highest published so far for polymer-based solar cells. The solution process involved ensures that the fabrication cost remains low and the processing is simple. The high efficiency achieved in this work brings these devices one step closer to commercialization.
5,431 citations
TL;DR: Identifying and building a sustainable energy system are perhaps two of the most critical issues that today's society must address.
Abstract: Identifying and building a sustainable energy system are perhaps two of the most critical issues that today's society must address. Replacing our current energy carrier mix with a sustainable fuel is one of the key pieces in that system. Hydrogen as an energy carrier, primarily derived from water, can address issues of sustainability, environmental emissions, and energy security. Issues relating to hydrogen production pathways are addressed here. Future energy systems require money and energy to build. Given that the United States has a finite supply of both, hard decisions must be made about the path forward, and this path must be followed with a sustained and focused effort.
4,824 citations
TL;DR: Here, the natural resistance of plant cell walls to microbial and enzymatic deconstruction is considered, collectively known as “biomass recalcitrance,” which is largely responsible for the high cost of lignocellulose conversion.
Abstract: Lignocellulosic biomass has long been recognized as a potential sustainable source of mixed sugars for fermentation to biofuels and other biomaterials. Several technologies have been developed during the past 80 years that allow this conversion process to occur, and the clear objective now is to make this process cost-competitive in today's markets. Here, we consider the natural resistance of plant cell walls to microbial and enzymatic deconstruction, collectively known as "biomass recalcitrance." It is this property of plants that is largely responsible for the high cost of lignocellulose conversion. To achieve sustainable energy production, it will be necessary to overcome the chemical and structural properties that have evolved in biomass to prevent its disassembly.
4,035 citations
TL;DR: In this article, a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs) under conditions that do not induce adsorption within a standard mesoporous activated carbon.
Abstract: Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores1, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested2 that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes3. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectrosocopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.
3,558 citations
Authors
Showing all 5699 results
Name | H-index | Papers | Citations |
---|---|---|---|
Michael Grätzel | 248 | 1423 | 303599 |
Jorge E. Cortes | 163 | 2784 | 124154 |
James M. Tour | 143 | 859 | 91364 |
Bruce E. Logan | 140 | 591 | 77351 |
Georgios B. Giannakis | 137 | 1321 | 73517 |
Alex Zunger | 128 | 826 | 78798 |
Zhen Li | 127 | 1712 | 71351 |
Chao Zhang | 127 | 3119 | 84711 |
Thomas E. Mallouk | 122 | 549 | 52593 |
Michael Wang | 117 | 1428 | 56282 |
Su-Huai Wei | 114 | 664 | 51234 |
Michael D. McGehee | 113 | 311 | 51652 |
Michael R. Wasielewski | 107 | 766 | 49082 |
William J. Parton | 105 | 302 | 46189 |
Aron Walsh | 103 | 475 | 43237 |