scispace - formally typeset
Search or ask a question

Showing papers by "National Tsing Hua University published in 2014"


Journal ArticleDOI
TL;DR: In this article, the authors extended previous rarefaction and extrapolation models for species richness (Hill number q D, where q ¼ 0) to measures of taxon diversity incorporating relative abundance (i.e., for any Hill number qD, q. 0) and presented a unified approach for both individual-based (abundance) data and sample-based data.
Abstract: Quantifying and assessing changes in biological diversity are central aspects of many ecological studies, yet accurate methods of estimating biological diversity from sampling data have been elusive. Hill numbers, or the effective number of species, are increasingly used to characterize the taxonomic, phylogenetic, or functional diversity of an assemblage. However, empirical estimates of Hill numbers, including species richness, tend to be an increasing function of sampling effort and, thus, tend to increase with sample completeness. Integrated curves based on sampling theory that smoothly link rarefaction (interpolation) and prediction (extrapolation) standardize samples on the basis of sample size or sample completeness and facilitate the comparison of biodiversity data. Here we extended previous rarefaction and extrapolation models for species richness (Hill number q D, where q ¼ 0) to measures of taxon diversity incorporating relative abundance (i.e., for any Hill number q D, q . 0) and present a unified approach for both individual-based (abundance) data and sample- based (incidence) data. Using this unified sampling framework, we derive both theoretical formulas and analytic estimators for seamless rarefaction and extrapolation based on Hill numbers. Detailed examples are provided for the first three Hill numbers: q ¼ 0 (species richness), q ¼ 1 (the exponential of Shannon's entropy index), and q ¼ 2 (the inverse of Simpson's concentration index). We developed a bootstrap method for constructing confidence intervals around Hill numbers, facilitating the comparison of multiple assemblages of both rarefied and extrapolated samples. The proposed estimators are accurate for both rarefaction and short-range extrapolation. For long-range extrapolation, the performance of the estimators depends on both the value of q and on the extrapolation range. We tested our methods on simulated data generated from species abundance models and on data from large species inventories. We also illustrate the formulas and estimators using empirical data sets from biodiversity surveys of temperate forest spiders and tropical ants.

2,182 citations


Journal ArticleDOI
TL;DR: In this article, a review of critical aspects of high-entropy alloys, including core effects, phases and crystal structures, mechanical properties, high-temperature properties, structural stabilities, and corrosion behaviors are discussed.
Abstract: High-entropy alloys (HEAs) are alloys with five or more principal elements. Due to the distinct design concept, these alloys often exhibit unusual properties. Thus, there has been significant interest in these materials, leading to an emerging yet exciting new field. This paper briefly reviews some critical aspects of HEAs, including core effects, phases and crystal structures, mechanical properties, high-temperature properties, structural stabilities, and corrosion behaviors. Current challenges and important future directions are also pointed out.

2,005 citations


Journal ArticleDOI
TL;DR: The first direct observation of the transition from indirect to direct bandgap in monolayer samples is reported by using angle-resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy.
Abstract: The transition from an indirect to direct bandgap in transition metal dichalcogenides has been observed in samples with thicknesses ranging from 8 to 1 monolayers by angle-resolved photoemission spectroscopy.

1,164 citations


Journal ArticleDOI
25 Jul 2014-ACS Nano
TL;DR: The demonstrated results of monolayer MoS2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices.
Abstract: We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices.

1,088 citations


Journal ArticleDOI
TL;DR: It is envisioned that the nanoscale InSe layers will not only find applications in flexible optoelectronics but also act as an active component to configure versatile 2D heterostructure devices.
Abstract: Two-dimensional crystals with a wealth of exotic dimensional-dependent properties are promising candidates for next-generation ultrathin and flexible optoelectronic devices. For the first time, we demonstrate that few-layered InSe photodetectors, fabricated on both a rigid SiO2/Si substrate and a flexible polyethylene terephthalate (PET) film, are capable of conducting broadband photodetection from the visible to near-infrared region (450–785 nm) with high photoresponsivities of up to 12.3 AW–1 at 450 nm (on SiO2/Si) and 3.9 AW–1 at 633 nm (on PET). These photoresponsivities are superior to those of other recently reported two-dimensional (2D) crystal-based (graphene, MoS2, GaS, and GaSe) photodetectors. The InSe devices fabricated on rigid SiO2/Si substrates possess a response time of ∼50 ms and exhibit long-term stability in photoswitching. These InSe devices can also operate on a flexible substrate with or without bending and reveal comparable performance to those devices on SiO2/Si. With these excelle...

687 citations


Journal ArticleDOI
TL;DR: Using high-resolution angle-resolved photoemission spectroscopy, Neupane et al. as mentioned in this paper identified the topological bulk Dirac semimetal phase in a Cd3As2 system.
Abstract: Topological Dirac semimetals constitute a promising platform for the study of quantum Hall phenomena and Weyl fermion transport. Using high-resolution angle-resolved photoemission spectroscopy, Neupane et al. identify the topological bulk Dirac semimetal phase in a Cd3As2 system.

667 citations


Journal ArticleDOI
TL;DR: The thinnest semiconductor, molybdenum disulfide (MoS2) monolayer, exhibits promising prospects in the applications of optoelectronics and valleytronics and is found that an optimized concentration of seed molecules is helpful for the nucleation of the MoS2.
Abstract: The thinnest semiconductor, molybdenum disulfide (MoS2) monolayer, exhibits promising prospects in the applications of optoelectronics and valleytronics. A uniform and highly crystalline MoS2 monolayer in a large area is highly desirable for both fundamental studies and substantial applications. Here, utilizing various aromatic molecules as seeding promoters, a large-area, highly crystalline, and uniform MoS2 monolayer was achieved with chemical vapor deposition (CVD) at a relatively low growth temperature (650 °C). The dependence of the growth results on the seed concentration and on the use of different seeding promoters is further investigated. It is also found that an optimized concentration of seed molecules is helpful for the nucleation of the MoS2. The newly identified seed molecules can be easily deposited on various substrates and allows the direct growth of monolayer MoS2 on Au, hexagonal boron nitride (h-BN), and graphene to achieve various hybrid structures.

643 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a framework for conducting case studies examining how smart cities were being implemented in San Francisco and Seoul Metropolitan City by integrating various practical perspectives with a consideration of smart city characteristics taken from the literature.

622 citations


Journal ArticleDOI
TL;DR: In this article, three diamine monomers were selected for cross-linking graphene oxide (GO) to prepare composite graphene oxide-framework (GOF) membranes through filtration using a pressure assisted self-assembly technique.
Abstract: Three diamine monomers (ethylenediamine, butylenediamine, and p-phenylenediamine) were selected for cross-linking graphene oxide (GO) to prepare composite graphene oxide-framework (GOF) membranes through filtration using a pressure-assisted self-assembly technique. The membranes were applied to separate an ethanol–water mixture by pervaporation. Unmodified GO comprised only hydrogen bonds and π–π interactions, but after cross-linking it with a diamine, attenuated total reflectance–Fourier transform infrared and X-ray photoelectron spectroscopy demonstrated that the diamine was chemically bonded both to GO and the membrane support. Moreover, GO hydrophilicity was substantially altered; water contact angle increased from 24.4° to 80.6° (from cross-linking with an aliphatic structure of diamine to cross-linking with an aromatic structure). Results of X-ray diffraction showed that d-spacing in GOF layers varied from 10.4 to 8.7 A. For GOFs presoaked in 90 wt % ethanol–water, covalent bonds between the layer a...

609 citations


Journal ArticleDOI
TL;DR: This paper demonstrates a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition, and provides a systematic comparison of the graphene/MoS 2 heterojunction contact to more traditional MoS2-metal junctions.
Abstract: Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as ...

559 citations


Journal ArticleDOI
TL;DR: This paper studies a probabilistically robust transmit optimization problem under imperfect channel state information at the transmitter and under the multiuser multiple-input single-output (MISO) downlink scenario, and develops two novel approximation methods using probabilistic techniques.
Abstract: In this paper, we study a probabilistically robust transmit optimization problem under imperfect channel state information (CSI) at the transmitter and under the multiuser multiple-input single-output (MISO) downlink scenario. The main issue is to keep the probability of each user's achievable rate outage as caused by CSI uncertainties below a given threshold. As is well known, such rate outage constraints present a significant analytical and computational challenge. Indeed, they do not admit simple closed-form expressions and are unlikely to be efficiently computable in general. Assuming Gaussian CSI uncertainties, we first review a traditional robust optimization-based method for approximating the rate outage constraints, and then develop two novel approximation methods using probabilistic techniques. Interestingly, these three methods can be viewed as implementing different tractable analytic upper bounds on the tail probability of a complex Gaussian quadratic form, and they provide convex restrictions, or safe tractable approximations, of the original rate outage constraints. In particular, a feasible solution from any one of these methods will automatically satisfy the rate outage constraints, and all three methods involve convex conic programs that can be solved efficiently using off-the-shelf solvers. We then proceed to study the performance-complexity tradeoffs of these methods through computational complexity and comparative approximation performance analyses. Finally, simulation results are provided to benchmark the three convex restriction methods against the state of the art in the literature. The results show that all three methods offer significantly improved solution quality and much lower complexity.

Journal ArticleDOI
TL;DR: In this article, the evolution of structure with temperature can be classified into four types: Al0−Al0.3, FCC structure; Al0.5−Al 0.7, mixed structure; and spinodal A2+B2 structure.

Journal ArticleDOI
TL;DR: These findings are helpful to better understand the tightly bound exciton properties in strongly quantum-confined systems and provide a simple approach to the selective and separate generation of excitons or trions with potential applications in excitonic interconnects and valleytronics.
Abstract: Photoluminescence (PL) properties of single-layer MoS2 are indicated to have strong correlations with the surrounding dielectric environment. Blue shifts of up to 40 meV of exciton or trion PL peaks were observed as a function of the dielectric constant of the environment. These results can be explained by the dielectric screening effect of the Coulomb potential; based on this, a scaling relationship was developed with the extracted electronic band gap and exciton and trion binding energies in good agreement with theoretical estimations. It was also observed that the trion/exciton intensity ratio can be tuned by at least 1 order of magnitude with different dielectric environments. Our findings are helpful to better understand the tightly bound exciton properties in strongly quantum-confined systems and provide a simple approach to the selective and separate generation of excitons or trions with potential applications in excitonic interconnects and valleytronics.

Journal ArticleDOI
TL;DR: This work provides a unified method of decomposing these diversities and constructing normalized taxonomic, phylogenetic, and functional similarity and differentiation measures, including N-assemblage phylogenetic or functional generalizations of species diversity.
Abstract: Hill numbers or the effective number of species are increasingly used to quantify species diversity of an assemblage. Hill numbers were recently extended to phylogenetic diversity, which incorporates species evolutionary history, as well as to functional diversity, which considers the differences among species traits. We review these extensions and integrate them into a framework of attribute diversity (the effective number of entities or total attribute value) based on Hill numbers of taxonomic entities (species), phylogenetic entities (branches of unit-length), or functional entities (species-pairs with unit-distance between species). This framework unifies ecologists' measures of species diversity, phylogenetic diversity, and distance-based functional diversity. It also provides a unified method of decomposing these diversities and constructing normalized taxonomic, phylogenetic, and functional similarity and differentiation measures, including N-assemblage phylogenetic or functional generalizations of...

Journal ArticleDOI
TL;DR: A novel sequential layer-by-layer sub-100 °C vacuum-sublimation method to fabricate planar-type organometal halide perovskite solar cells is developed, suitable for a wide variety of rigid and flexible applications.
Abstract: A novel sequential layer-by-layer sub-100 °C vacuum-sublimation method to fabricate planar-type organometal halide perovskite solar cells is developed. Very uniform and highly crystalline perovskite thin films with 100% surface coverage are produced. The cells attain maximum and average efficiencies up to 15.4% and 14%, respectively. This low- temperature, all-vacuum process is suitable for a wide variety of rigid and flexible applications.

Journal ArticleDOI
TL;DR: H-BN and MoS2 are identified as two different types of 2D materials with potential for use as Raman enhancement substrates and both charge transfer and dipole-dipole coupling may occur, although weaker in magnitude, forMoS2.
Abstract: Realizing Raman enhancement on a flat surface has become increasingly attractive after the discovery of graphene-enhanced Raman scattering (GERS). Two-dimensional (2D) layered materials, exhibiting a flat surface without dangling bonds, were thought to be strong candidates for both fundamental studies of this Raman enhancement effect and its extension to meet practical applications requirements. Here, we study the Raman enhancement effect on graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2), by using the copper phthalocyanine (CuPc) molecule as a probe. This molecule can sit on these layered materials in a face-on configuration. However, it is found that the Raman enhancement effect, which is observable on graphene, hBN, and MoS2, has different enhancement factors for the different vibrational modes of CuPc, depending strongly on the surfaces. Higher-frequency phonon modes of CuPc (such as those at 1342, 1452, 1531 cm–1) are enhanced more strongly on graphene than that on h-BN, whi...

Journal ArticleDOI
TL;DR: The electronic transport and device properties of monolayer molybdenum disulphide grown by chemical vapour deposition are reported and it is revealed that these devices have the potential to suppress short channel effects and have high critical breakdown electric field.
Abstract: Layered transition metal dichalcogenides display a wide range of attractive physical and chemical properties and are potentially important for various device applications. Here we report the electronic transport and device properties of monolayer molybdenum disulphide grown by chemical vapour deposition. We show that these devices have the potential to suppress short channel effects and have high critical breakdown electric field. However, our study reveals that the electronic properties of these devices are at present severely limited by the presence of a significant amount of band tail trapping states. Through capacitance and ac conductance measurements, we systematically quantify the density-of-states and response time of these states. Because of the large amount of trapped charges, the measured effective mobility also leads to a large underestimation of the true band mobility and the potential of the material. Continual engineering efforts on improving the sample quality are needed for its potential applications.

Journal ArticleDOI
TL;DR: The present development of blind HU seems to be converging to a point where the lines between remote sensing-originated ideas and advanced SP and optimization concepts are no longer clear, and insights from both sides would be used to establish better methods.
Abstract: Blind hyperspectral unmixing (HU), also known as unsupervised HU, is one of the most prominent research topics in signal processing (SP) for hyperspectral remote sensing [1], [2]. Blind HU aims at identifying materials present in a captured scene, as well as their compositions, by using high spectral resolution of hyperspectral images. It is a blind source separation (BSS) problem from a SP viewpoint. Research on this topic started in the 1990s in geoscience and remote sensing [3]-[7], enabled by technological advances in hyperspectral sensing at the time. In recent years, blind HU has attracted much interest from other fields such as SP, machine learning, and optimization, and the subsequent cross-disciplinary research activities have made blind HU a vibrant topic. The resulting impact is not just on remote sensing - blind HU has provided a unique problem scenario that inspired researchers from different fields to devise novel blind SP methods. In fact, one may say that blind HU has established a new branch of BSS approaches not seen in classical BSS studies. In particular, the convex geometry concepts - discovered by early remote sensing researchers through empirical observations [3]-[7] and refined by later research - are elegant and very different from statistical independence-based BSS approaches established in the SP field. Moreover, the latest research on blind HU is rapidly adopting advanced techniques, such as those in sparse SP and optimization. The present development of blind HU seems to be converging to a point where the lines between remote sensing-originated ideas and advanced SP and optimization concepts are no longer clear, and insights from both sides would be used to establish better methods.

Journal ArticleDOI
TL;DR: A compilation of commentaries gives a historical perspective and current status of research covered in some of the most cited research articles in the history of the Journal of Controlled Release.

Journal ArticleDOI
TL;DR: In this paper, the authors used spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films.
Abstract: Understanding the spin-texture behaviour of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nanodevices. Here, by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunnelling-dependent evolution of spin configuration in topological insulator thin films across the metal-to-insulator transition. We report a systematic binding energy- and wavevector-dependent spin polarization for the topological surface electrons in the ultrathin gapped-Dirac-cone limit. The polarization decreases significantly with enhanced tunnelling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model that captures this delicate relationship between quantum tunnelling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nanodevice.

Journal ArticleDOI
TL;DR: High graphitized NPCs are synthesized by one-step direct carbonization of cobalt-containing zeolitic imidazolate framework-67 (ZIF-67) to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity.
Abstract: Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one-step direct carbonization of cobalt-containing zeolitic imidazolate framework-67 (ZIF-67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp(2)-bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge-discharge measurements. Our NPC is very promising for efficient electrodes for high-performance supercapacitor applications. A maximum specific capacitance of 238 F g(-1) is observed at a scan rate of 20 mVs(-1). This value is very high compared to previous works on carbon-based electric double layer capacitors.

Journal ArticleDOI
TL;DR: This study uses the technology–organization–environment (TOE) framework of innovation diffusion theory to develop a cloud service adoption model that deals with not only adoption intention, but also pricing mechanisms and deployment models.

Journal ArticleDOI
TL;DR: This is the first literature example of the destruction of tumors in NIR window II induced by dual modal nanomaterial-mediated photodynamic and photothermal therapy (NmPDT & NmPTT).
Abstract: Gold nanoechinus can sensitize the formation of singlet oxygen in the first and the second near-infra red (NIR) biological windows and exert in vivo dual modal photodynamic and photothermal therapeutic effects (PDT and PTT) to destruct the tumors completely. This is the first literature example of the destruction of tumors in NIR window II induced by dual modal nanomaterial-mediated photodynamic and photothermal therapy (NmPDT & NmPTT).


Journal ArticleDOI
TL;DR: In this article, the authors show that the long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the HESS.
Abstract: The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z similar to 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the HESS. instrument. The analysis of the HESS. data shows no indication of emission and yields an integral flux upper limit above similar to 380 GeV of 4.2 x 10(-12) cm(-2) s(-1) s (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the HESS. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.

Journal ArticleDOI
TL;DR: The future of stimuli‐responsive materials will be explored, including combination with molecular imaging probes and targeting moieties, which could enable simultaneous diagnosis and treatment of a specific disease, as well as multi‐functionality and responsiveness to multiple stimuli, all important in overcoming intrinsic biological barriers and increasing clinical viability.
Abstract: Stimuli-responsive materials are so named because they can alter their physicochemical properties and/or structural conformations in response to specific stimuli. The stimuli can be internal, such as physiological or pathological variations in the target cells/tissues, or external, such as optical and ultrasound radiations. In recent years, these materials have gained increasing interest in biomedical applications due to their potential for spatially and temporally controlled release of theranostic agents in response to the specific stimuli. This article highlights several recent advances in the development of such materials, with a focus on their molecular designs and formulations. The future of stimuli-responsive materials will also be explored, including combination with molecular imaging probes and targeting moieties, which could enable simultaneous diagnosis and treatment of a specific disease, as well as multi-functionality and responsiveness to multiple stimuli, all important in overcoming intrinsic biological barriers and increasing clinical viability.

Journal ArticleDOI
TL;DR: This Review focuses on recent research developments in graphene-based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/"polymer composites", and graphene- based asymmetricsupercapacitor applications.
Abstract: Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high-energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy-storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double-layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene-based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene-based asymmetric supercapacitors. The challenges and prospects of graphene-based supercapacitors are also discussed.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the literature on the production of biofuel from microalgae cultivated using captured CO2, the conversion of CO2 with hydrogen to chemicals and energy products, and sustainable and clean sources of hydrogen.
Abstract: Global warming due to the accumulation of atmospheric CO2 has received widespread attention in recent years. Although various CO2 capture technologies have been proposed, using the captured CO2 from power plants is increasingly popular because of concerns with regard to the safety of underground and ocean CO2 storage. Various techniques related to utilization of CO2 from the exhausted gas of power plants are discussed in this article. The existing and under-development technologies for CO2 utilization in the world are briefly reviewed. Two categories, direct utilization of CO2 and conversion of CO2 to chemicals and energy products, are used to classify different forms of CO2 utilization. Regarding the direct utilization of CO2, in addition to its use in soft drinks, welding, foaming, and propellants, as well as the use of supercritical CO2 as a solvent, CO2 capture via photosynthesis to directly fix carbon into microalgae has also attracted the attention of researchers. The conversion of CO2 into chemicals and energy products via this approach is a promising way to not only reduce the CO2 emissions, but also generate more economic value. Since CO2 is just a source of carbon without hydrogen, a clean, sustainable and cheap source of hydrogen should be developed. This article reviews the literature on the production of biofuel from microalgae cultivated using captured CO2, the conversion of CO2 with hydrogen to chemicals and energy products, and sustainable and clean sources of hydrogen, in order to demonstrate the potential of CO2 utilization.

01 Jan 2014
TL;DR: In this paper, the authors present a taxonomic, phylogenetic, and functional framework for attribute diversity, which unifies ecologists' measures of species diversity,phylogenetic diversity, and distance-based functional diversity.
Abstract: Hillnumbersortheeffectivenumberofspeciesareincreasinglyusedtoquan- tify species diversity of an assemblage. Hill numbers were recently extended to phylogenetic diversity, which incorporates species evolutionary history, as well as to functional diversity, which considers the differences among species traits. We review these extensions and integrate them into a frame- work of attribute diversity (the effective number of entities or total attribute value) based on Hill numbers of taxonomic entities (species), phylogenetic entities (branches of unit-length), or functional entities (species-pairs with unit-distance between species). This framework unifies ecologists' measures of species diversity,phylogeneticdiversity,anddistance-basedfunctional di- versity. It also provides a unified method of decomposing these diversities and constructing normalized taxonomic, phylogenetic, and functional sim- ilarity and differentiation measures, including N-assemblage phylogenetic or functional generalizations of the classic Jaccard, Sorensen, Horn, and Morisita-Horn indexes. A real example shows how this framework extracts ecological meaning from complex data.

Journal ArticleDOI
TL;DR: A facile film treatment with formic acid to enhance the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) by 4 orders of magnitude is proposed.
Abstract: We proposed a facile film treatment with formic acid to enhance the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) by 4 orders of magnitude. The effect of formic acid concentration on conductivity was investigated; conductivity increased fast with increasing concentration up to 10 M and then increased slightly, the highest conductivity being 2050 S cm(-1) using 26 M concentration. Formic acid treated PEDOT:PSS films also exhibited very high transmittances. The mechanism of conductivity enhancement was explored through SEM, AFM, and XPS. Formic acid with its high dielectric constant screens the charge between PEDOT and PSS bringing about phase separation between them. Increased carrier concentration, removal of PSS from the film, morphology, and conformation change with elongated and better connected PEDOT chains are the main mechanisms of conductivity enhancement. ITO-free polymer solar cells were also fabricated using PEDOT:PSS electrodes treated with different concentrations of formic acid and showed equal performance to that of ITO electrodes. The concentrated acid treatment did not impair the desirable film properties as well as stability and performance of the solar cells.