scispace - formally typeset
Search or ask a question
Institution

National Tsing Hua University

EducationHsinchu, Taiwan
About: National Tsing Hua University is a education organization based out in Hsinchu, Taiwan. It is known for research contribution in the topics: Thin film & Layer (electronics). The organization has 39811 authors who have published 50379 publications receiving 1100284 citations. The organization is also known as: NTHU.


Papers
More filters
Journal ArticleDOI
TL;DR: Under linear, Gaussian assumptions on the target dynamics and birth process, the posterior intensity at any time step is a Gaussian mixture and closed-form recursions for propagating the means, covariances, and weights of the constituent Gaussian components of the posteriorintensity are derived.
Abstract: A new recursive algorithm is proposed for jointly estimating the time-varying number of targets and their states from a sequence of observation sets in the presence of data association uncertainty, detection uncertainty, noise, and false alarms. The approach involves modelling the respective collections of targets and measurements as random finite sets and applying the probability hypothesis density (PHD) recursion to propagate the posterior intensity, which is a first-order statistic of the random finite set of targets, in time. At present, there is no closed-form solution to the PHD recursion. This paper shows that under linear, Gaussian assumptions on the target dynamics and birth process, the posterior intensity at any time step is a Gaussian mixture. More importantly, closed-form recursions for propagating the means, covariances, and weights of the constituent Gaussian components of the posterior intensity are derived. The proposed algorithm combines these recursions with a strategy for managing the number of Gaussian components to increase efficiency. This algorithm is extended to accommodate mildly nonlinear target dynamics using approximation strategies from the extended and unscented Kalman filters

1,805 citations

Journal ArticleDOI
TL;DR: This work provides a probabilistic derivation for the classic, incidence-based forms of Jaccard and Sorensen indices of compositional similarity and proposes estimators for these indices that include the effect of unseen shared species, based on either (replicated) incidence- or abundancebased sample data.
Abstract: The classic Jaccard and Sorensen indices of compositional similarity (and other indices that depend upon the same variables) are notoriously sensitive to sample size, especially for assemblages with numerous rare species. Further, because these indices are based solely on presence–absence data, accurate estimators for them are unattainable. We provide a probabilistic derivation for the classic, incidence-based forms of these indices and extend this approach to formulate new Jaccard-type or Sorensen-type indices based on species abundance data. We then propose estimators for these indices that include the effect of unseen shared species, based on either (replicated) incidence- or abundancebased sample data. In sampling simulations, these new estimators prove to be considerably less biased than classic indices when a substantial proportion of species are missing from samples. Based on species-rich empirical datasets, we show how incorporating the effect of unseen shared species not only increases accuracy but also can change the interpretation of results.

1,672 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1235 moreInstitutions (132)
TL;DR: This analysis expands upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars.
Abstract: On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function pðρÞ of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R1 ¼ 10.8 þ2.0 −1.7 km for the heavier star and R2 ¼ 10.7 þ2.1 −1.5 km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M⊙ as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R1 ¼ 11.9 þ1.4 −1.4 km and R2 ¼ 11.9 þ1.4 −1.4 km at the 90% credible level. Finally, we obtain constraints on pðρÞ at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5 þ2.7 −1.7 × 1034 dyn cm−2 at the 90% level.

1,595 citations

Journal ArticleDOI
TL;DR: Improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.

1,517 citations

Proceedings Article
02 Mar 2017
TL;DR: This work makes a shared-latent space assumption and proposes an unsupervised image-to-image translation framework based on Coupled GANs that achieves state-of-the-art performance on benchmark datasets.
Abstract: Unsupervised image-to-image translation aims at learning a joint distribution of images in different domains by using images from the marginal distributions in individual domains. Since there exists an infinite set of joint distributions that can arrive the given marginal distributions, one could infer nothing about the joint distribution from the marginal distributions without additional assumptions. To address the problem, we make a shared-latent space assumption and propose an unsupervised image-to-image translation framework based on Coupled GANs. We compare the proposed framework with competing approaches and present high quality image translation results on various challenging unsupervised image translation tasks, including street scene image translation, animal image translation, and face image translation. We also apply the proposed framework to domain adaptation and achieve state-of-the-art performance on benchmark datasets. Code and additional results are available in https://github.com/mingyuliutw/unit.

1,496 citations


Authors

Showing all 39955 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Marc G. Caron17367499802
Jongmin Lee1502257134772
Christopher M. Dobson1501008105475
Norbert Perrimon13861073505
Jonathan Butterworth133101986993
Chi-Huey Wong129122066349
Francois Corriveau128102275729
Nikolaos Konstantinidis12894475399
Chi Lin1251313102710
Pai-hsien Jennifer Hsu11856559994
Lain-Jong Li11362758035
Shih-Chieh Hsu10957453162
John Veitch10945777938
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

95% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

National Taiwan University
130.8K papers, 3.3M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022248
20212,121
20202,265
20192,232
20182,058