scispace - formally typeset
Search or ask a question
Institution

National University of Cuyo

EducationMendoza, Argentina
About: National University of Cuyo is a education organization based out in Mendoza, Argentina. It is known for research contribution in the topics: Population & Exocytosis. The organization has 3175 authors who have published 4872 publications receiving 83221 citations. The organization is also known as: National University of Cuyo.


Papers
More filters
Journal ArticleDOI
TL;DR: A panel of leading experts in the field attempts here to define several autophagy‐related terms based on specific biochemical features to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagic research.
Abstract: Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.

1,095 citations

Journal ArticleDOI
TL;DR: Interestingly, the results indicate that transferrin (Tf) stimulated exosome release in a Ca2+-dependent manner, suggesting that Tf might be a physiological stimulus for exosomes release in K562 cells.

699 citations

Journal ArticleDOI
Oliver Kepp1, Laura Senovilla1, Ilio Vitale, Erika Vacchelli1, Sandy Adjemian2, Patrizia Agostinis3, Lionel Apetoh4, Fernando Aranda1, Vincenzo Barnaba5, Norma Bloy1, Laura Bracci6, Karine Breckpot7, David Brough8, Aitziber Buqué1, Maria G. Castro9, Mara Cirone5, María Isabel Colombo10, Isabelle Cremer11, Sandra Demaria12, Luciana Dini13, Aristides G. Eliopoulos14, Alberto Faggioni5, Silvia C. Formenti12, Jitka Fucikova15, Lucia Gabriele6, Udo S. Gaipl16, Jérôme Galon11, Abhishek D. Garg3, François Ghiringhelli4, Nathalia A. Giese17, Zong Sheng Guo18, Akseli Hemminki19, Martin Herrmann16, James W. Hodge20, Stefan Holdenrieder21, Jamie Honeychurch8, Hong-Min Hu22, Xing Huang1, Timothy M Illidge8, Koji Kono23, Mladen Korbelik, Dmitri V. Krysko24, Sherene Loi, Pedro R. Lowenstein9, Enrico Lugli25, Yuting Ma1, Frank Madeo26, Angelo A. Manfredi, Isabelle Martins27, Domenico Mavilio25, Laurie Menger28, Nicolò Merendino29, Michael Michaud1, Grégoire Mignot, Karen L. Mossman30, Gabriele Multhoff31, Rudolf Oehler32, Fabio Palombo5, Theocharis Panaretakis33, Jonathan Pol1, Enrico Proietti6, Jean-Ehrland Ricci34, Chiara Riganti35, Patrizia Rovere-Querini, Anna Rubartelli, Antonella Sistigu, Mark J. Smyth36, Juergen Sonnemann, Radek Spisek15, John Stagg37, Abdul Qader Sukkurwala38, Eric Tartour39, Andrew Thorburn40, Stephen H. Thorne18, Peter Vandenabeele24, Francesca Velotti29, Samuel T Workenhe30, Haining Yang41, Wei-Xing Zong42, Laurence Zitvogel1, Guido Kroemer43, Lorenzo Galluzzi43 
TL;DR: Strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative I CD inducers are outlined, based on a high-content, high-throughput platform that was recently developed.
Abstract: Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.

665 citations

Journal ArticleDOI
TL;DR: Results indicate that a functional Rab7 is important for the normal progression of autophagy.
Abstract: Autophagy is a normal degradative pathway that involves the sequestration of cytoplasmic components and organelles in a vacuole called an autophagosome that finally fuses with the lysosome. Rab7 is a member of the Rab family involved in transport to late endosomes and in the biogenesis of the perinuclear lysosome compartment. To assess the role of Rab7 in autophagy we stably transfected CHO cells with wild-type pEGFP-Rab7, and the mutants T22N (GDP form) and Q67L (GTP form). Autophagy was induced by amino acid starvation and the autophagic vacuoles were labeled with monodansylcadaverine. By fluorescence microscopy we observed that Rab7wt and the active mutant Rab7Q67L were associated with ring-shaped vesicles labeled with monodansylcadaverine indicating that these Rab proteins associate with the membrane of autophagic vesicles. As expected, in cells transfected with the negative mutant Rab7T22N the protein was diffusely distributed in the cytosol. However, upon induction of autophagy by amino acid starvation or by rapamycin treatment this mutant clearly decorated the monodansylcadaverine-labeled vesicles. Furthermore, a marked increase in the size of the monodansylcadaverine-labeled vacuoles induced by starvation was observed by overexpression of the inactive mutant T22N. Similarly, there was an increase in the size of vesicles labeled with LC3, a protein that specifically localizes on the autophagosomal membrane. Taken together the results indicate that a functional Rab7 is important for the normal progression of autophagy.

608 citations

Journal ArticleDOI
TL;DR: Results indicate that in the presence of vinblastine very large MDC-vacuoles accumulated mainly under starvation conditions, indicating that the expansion of autophagosomes is upregulated by amino acid deprivation.
Abstract: Autophagy is a normal degradative pathway that involves the sequestration of cytoplasmic portions and intracellular organelles in a membrane vacuole called the autophagosome. These vesicles fuse with lysosomes and the sequestered material is degraded. Owing to the complexity of the autophagic pathway and to its inaccessibility to external probes, little is known about the molecular mechanisms that regulate autophagy in higher eukaryotic cells. We used the autofluorescent drug monodansylcadaverine (MDC), a specific autophagolysosome marker to analyze at the molecular level the machinery involved in the autophagic process. We have developed a morphological and biochemical assay to study authophagy in living cells based on the incorporation of MDC. With this assay we observed that the accumulation of MDC was specifically induced by amino acid deprivation and was inhibited by 3-methlyadenine, a classical inhibitor of the autophagic pathway. Additionally, wortmannin, an inhibitor of PI3-kinases that blocks autophagy at an early stage, inhibited the accumulation of MDC in autophagic vacuoles. We also found that treatment of the cells with N-ethylmaleimide (NEM), an agent known to inhibit several vesicular transport events, completely blocked the incorporation of MDC, suggesting that an NEM-sensitive protein is required for the formation of autophagic vacuoles. Conversely, vinblastine, a microtubule depolymerizing agent that induces the accumulation of autophagic vacuoles by preventing their degradation, increased the accumulation of MDC and altered the distribution and size of the autophagic vacuoles. Our results indicate that in the presence of vinblastine very large MDC-vacuoles accumulated mainly under starvation conditions, indicating that the expansion of autophagosomes is upregulated by amino acid deprivation. Furthermore, these MDC-vacuoles were labeled with LC3, one of the mammalian homologues of the yeast protein Apg8/Aut7 that plays an important role in autophagosome formation.

520 citations


Authors

Showing all 3213 results

NameH-indexPapersCitations
David G. Bostwick9940331638
Elbio Dagotto6753327172
Facundo Manes6624518946
Marcela Carena6319240884
Daniel Batlle5824311557
M. Gómez Berisso5822113924
Agustín Ibáñez543379032
Leonid V. Zhigilei521949965
David M. Spooner511878974
Hernán Asorey5117111047
Raúl A. Baragiola482317932
Gerardo F. Goya482018972
María Isabel Colombo4823118322
Vittorio Erspamer481529666
Ramon Codina472108199
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

83% related

Autonomous University of Madrid
52.8K papers, 1.6M citations

83% related

University of Valencia
65.6K papers, 1.7M citations

82% related

University of Barcelona
108.5K papers, 3.7M citations

81% related

University of Granada
59.2K papers, 1.4M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202268
2021356
2020378
2019323
2018287