scispace - formally typeset
Search or ask a question

Showing papers by "National University of Defense Technology published in 2013"


Book
30 May 2013
TL;DR: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation.
Abstract: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation. In "Representational Learning with ELMs for Big Data," Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang, and Chi Man Vong propose using the ELM as an auto-encoder for learning feature representations using singular values. In "A Secure and Practical Mechanism for Outsourcing ELMs in Cloud Computing," Jiarun Lin, Jianping Yin, Zhiping Cai, Qiang Liu, Kuan Li, and Victor C.M. Leung propose a method for handling large data applications by outsourcing to the cloud that would dramatically reduce ELM training time. In "ELM-Guided Memetic Computation for Vehicle Routing," Liang Feng, Yew-Soon Ong, and Meng-Hiot Lim consider the ELM as an engine for automating the encapsulation of knowledge memes from past problem-solving experiences. In "ELMVIS: A Nonlinear Visualization Technique Using Random Permutations and ELMs," Anton Akusok, Amaury Lendasse, Rui Nian, and Yoan Miche propose an ELM method for data visualization based on random permutations to map original data and their corresponding visualization points. In "Combining ELMs with Random Projections," Paolo Gastaldo, Rodolfo Zunino, Erik Cambria, and Sergio Decherchi analyze the relationships between ELM feature-mapping schemas and the paradigm of random projections. In "Reduced ELMs for Causal Relation Extraction from Unstructured Text," Xuefeng Yang and Kezhi Mao propose combining ELMs with neuron selection to optimize the neural network architecture and improve the ELM ensemble's computational efficiency. In "A System for Signature Verification Based on Horizontal and Vertical Components in Hand Gestures," Beom-Seok Oh, Jehyoung Jeon, Kar-Ann Toh, Andrew Beng Jin Teoh, and Jaihie Kim propose a novel paradigm for hand signature biometry for touchless applications without the need for handheld devices. Finally, in "An Adaptive and Iterative Online Sequential ELM-Based Multi-Degree-of-Freedom Gesture Recognition System," Hanchao Yu, Yiqiang Chen, Junfa Liu, and Guang-Bin Huang propose an online sequential ELM-based efficient gesture recognition algorithm for touchless human-machine interaction.

705 citations


Journal ArticleDOI
TL;DR: A new bottom-up paradigm for detecting visual saliency is proposed, characterized by a scale-space analysis of the amplitude spectrum of natural images, and it is shown that the convolution of the image amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale is equivalent to an image saliency detector.
Abstract: We address the issue of visual saliency from three perspectives. First, we consider saliency detection as a frequency domain analysis problem. Second, we achieve this by employing the concept of nonsaliency. Third, we simultaneously consider the detection of salient regions of different size. The paper proposes a new bottom-up paradigm for detecting visual saliency, characterized by a scale-space analysis of the amplitude spectrum of natural images. We show that the convolution of the image amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale is equivalent to an image saliency detector. The saliency map is obtained by reconstructing the 2D signal using the original phase and the amplitude spectrum, filtered at a scale selected by minimizing saliency map entropy. A Hypercomplex Fourier Transform performs the analysis in the frequency domain. Using available databases, we demonstrate experimentally that the proposed model can predict human fixation data. We also introduce a new image database and use it to show that the saliency detector can highlight both small and large salient regions, as well as inhibit repeated distractors in cluttered images. In addition, we show that it is able to predict salient regions on which people focus their attention.

577 citations


Journal ArticleDOI
TL;DR: Theoretical results are consistent with the recent experiments and suggest MoS2 as a potential material for gas sensing application because of its ability to be significantly modulated by a perpendicular electric field.
Abstract: Using first-principles calculations, we investigate the adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO) on monolayer MoS2. The most stable adsorption configuration, adsorption energy, and charge transfer are obtained. It is shown that all the molecules are weakly adsorbed on the monolayer MoS2 surface and act as charge acceptors for the monolayer, except NH3 which is found to be a charge donor. Furthermore, we show that charge transfer between the adsorbed molecule and MoS2 can be significantly modulated by a perpendicular electric field. Our theoretical results are consistent with the recent experiments and suggest MoS2 as a potential material for gas sensing application.

569 citations


Journal ArticleDOI
TL;DR: Performance comparisons with FRQI reveal that NEQR can achieve a quadratic speedup in quantum image preparation, increase the compression ratio of quantum images by approximately 1.5X, and retrieve digital images from quantum images accurately.
Abstract: Quantum computation is becoming an important and effective tool to overcome the high real-time computational requirements of classical digital image processing. In this paper, based on analysis of existing quantum image representations, a novel enhanced quantum representation (NEQR) for digital images is proposed, which improves the latest flexible representation of quantum images (FRQI). The newly proposed quantum image representation uses the basis state of a qubit sequence to store the gray-scale value of each pixel in the image for the first time, instead of the probability amplitude of a qubit, as in FRQI. Because different basis states of qubit sequence are orthogonal, different gray scales in the NEQR quantum image can be distinguished. Performance comparisons with FRQI reveal that NEQR can achieve a quadratic speedup in quantum image preparation, increase the compression ratio of quantum images by approximately 1.5X, and retrieve digital images from quantum images accurately. Meanwhile, more quantum image operations related to gray-scale information in the image can be performed conveniently based on NEQR, for example partial color operations and statistical color operations. Therefore, the proposed NEQR quantum image model is more flexible and better suited for quantum image representation than other models in the literature.

487 citations


Journal ArticleDOI
TL;DR: Rotational Projection Statistics (RoPS) as discussed by the authors is a feature descriptor that is obtained by rotationally projecting the neighboring points of a feature point onto 2D planes and calculating a set of statistics including low-order central moments and entropy of the distribution of these projected points.
Abstract: Recognizing 3D objects in the presence of noise, varying mesh resolution, occlusion and clutter is a very challenging task. This paper presents a novel method named Rotational Projection Statistics (RoPS). It has three major modules: local reference frame (LRF) definition, RoPS feature description and 3D object recognition. We propose a novel technique to define the LRF by calculating the scatter matrix of all points lying on the local surface. RoPS feature descriptors are obtained by rotationally projecting the neighboring points of a feature point onto 2D planes and calculating a set of statistics (including low-order central moments and entropy) of the distribution of these projected points. Using the proposed LRF and RoPS descriptor, we present a hierarchical 3D object recognition algorithm. The performance of the proposed LRF, RoPS descriptor and object recognition algorithm was rigorously tested on a number of popular and publicly available datasets. Our proposed techniques exhibited superior performance compared to existing techniques. We also showed that our method is robust with respect to noise and varying mesh resolution. Our RoPS based algorithm achieved recognition rates of 100, 98.9, 95.4 and 96.0 % respectively when tested on the Bologna, UWA, Queen’s and Ca’ Foscari Venezia Datasets.

437 citations


Journal ArticleDOI
31 May 2013-PLOS ONE
TL;DR: Compared with widely adopted aligners including BWA, Bowtie2, SeqAlto, CUSHAW2, GEM and GPU-based aligners, SOAP3-dp was found to be two to tens of times faster, while maintaining the highest sensitivity and lowest false discovery rate (FDR) on Illumina reads with different lengths.
Abstract: To tackle the exponentially increasing throughput of Next-Generation Sequencing (NGS), most of the existing short-read aligners can be configured to favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging the computational power of both CPU and GPU with optimized algorithms, delivers high speed and sensitivity simultaneously. Compared with widely adopted aligners including BWA, Bowtie2, SeqAlto, CUSHAW2, GEM and GPU-based aligners BarraCUDA and CUSHAW, SOAP3-dp was found to be two to tens of times faster, while maintaining the highest sensitivity and lowest false discovery rate (FDR) on Illumina reads with different lengths. Transcending its predecessor SOAP3, which does not allow gapped alignment, SOAP3-dp by default tolerates alignment similarity as low as 60%. Real data evaluation using human genome demonstrates SOAP3-dp's power to enable more authentic variants and longer Indels to be discovered. Fosmid sequencing shows a 9.1% FDR on newly discovered deletions. SOAP3-dp natively supports BAM file format and provides the same scoring scheme as BWA, which enables it to be integrated into existing analysis pipelines. SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and Tianhe-1A.

407 citations


Journal ArticleDOI
TL;DR: The findings indicate that human mobility is highly dependent on historical behaviors, and that the maximum predictability is not only a fundamental theoretical limit for potential predictive power, but also an approachable target for actual prediction accuracy.
Abstract: In this study we analyze the travel patterns of 500,000 individuals in Cote d'Ivoire using mobile phone call data records. By measuring the uncertainties of movements using entropy, considering both the frequencies and temporal correlations of individual trajectories, we find that the theoretical maximum predictability is as high as 88%. To verify whether such a theoretical limit can be approached, we implement a series of Markov chain (MC) based models to predict the actual locations visited by each user. Results show that MC models can produce a prediction accuracy of 87% for stationary trajectories and 95% for non-stationary trajectories. Our findings indicate that human mobility is highly dependent on historical behaviors, and that the maximum predictability is not only a fundamental theoretical limit for potential predictive power, but also an approachable target for actual prediction accuracy.

344 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss p-type ZnO materials: theory, growth, properties and devices, comprehensively, and summarize the growth techniques and properties of P-type materials.

329 citations


Journal ArticleDOI
TL;DR: In this paper, an exact analytical approach based on a combination of the spectral element method and periodic structure theory is proposed for the prediction of all the band edge frequencies in an exact manner without the need to calculate propagation constants.

304 citations


Journal ArticleDOI
TL;DR: A dissociation of the DMN into subnetworks is suggested, where persistent abnormal functional connectivity within the anterior subnetwork in recovered MDD subjects may constitute a biomarker of asymptomatic depression and potential for relapse.

292 citations


Journal ArticleDOI
TL;DR: In this article, the structural, electronic and magnetic properties of monolayer MoS2 doped with nonmetal and transition-metal atoms are investigated using first-principles calculations.

Journal ArticleDOI
TL;DR: This work identifies and analyzes a number of security challenges that are specific to VCs, e.g., challenges of authentication of high-mobility vehicles, scalability and single interface, tangled identities and locations, and the complexity of establishing trust relationships among multiple players caused by intermittent short-range communications.
Abstract: In a series of recent papers, Prof. Olariu and his co-workers have promoted the vision of vehicular clouds (VCs), a nontrivial extension, along several dimensions, of conventional cloud computing. In a VC, underutilized vehicular resources including computing power, storage, and Internet connectivity can be shared between drivers or rented out over the Internet to various customers. Clearly, if the VC concept is to see a wide adoption and to have significant societal impact, security and privacy issues need to be addressed. The main contribution of this work is to identify and analyze a number of security challenges and potential privacy threats in VCs. Although security issues have received attention in cloud computing and vehicular networks, we identify security challenges that are specific to VCs, e.g., challenges of authentication of high-mobility vehicles, scalability and single interface, tangled identities and locations, and the complexity of establishing trust relationships among multiple players caused by intermittent short-range communications. Additionally, we provide a security scheme that addresses several of the challenges discussed.

Journal ArticleDOI
TL;DR: In this paper, the authors reveal that the most practical solvent DOL and DME are not stable and large amount of degradation products with -OLi edge groups become the oxygen source.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the characteristics of cavity assisted hydrogen jet combustion in a supersonic flow with a total pressure of 1.6 MPa, a total temperature of 1486 K, and a Mach number of 2.52, simulating flight Mach 6 conditions.

Journal ArticleDOI
TL;DR: The idea is to design an Incast congestion Control for TCP (ICTCP) scheme on the receiver side that adjusts the TCP receive window proactively before packet loss occurs, and achieves almost zero timeouts and high goodput for TCP incast.
Abstract: Transport Control Protocol (TCP) incast congestion happens in high-bandwidth and low-latency networks when multiple synchronized servers send data to the same receiver in parallel. For many important data-center applications such as MapReduce and Search, this many-to-one traffic pattern is common. Hence TCP incast congestion may severely degrade their performances, e.g., by increasing response time. In this paper, we study TCP incast in detail by focusing on the relationships between TCP throughput, round-trip time (RTT), and receive window. Unlike previous approaches, which mitigate the impact of TCP incast congestion by using a fine-grained timeout value, our idea is to design an Incast congestion Control for TCP (ICTCP) scheme on the receiver side. In particular, our method adjusts the TCP receive window proactively before packet loss occurs. The implementation and experiments in our testbed demonstrate that we achieve almost zero timeouts and high goodput for TCP incast.

Journal ArticleDOI
TL;DR: A new method to identify fusion transcripts from paired-end RNA-Seq data by applying an improved partial exhaustion algorithm to construct a library of fusion junction sequences, and employs a series of filters to nominate high-confidence fusion transcripts.
Abstract: We have developed a new method, SOAPfuse, to identify fusion transcripts from paired-end RNA-Seq data. SOAPfuse applies an improved partial exhaustion algorithm to construct a library of fusion junction sequences, which can be used to efficiently identify fusion events, and employs a series of filters to nominate high-confidence fusion transcripts. Compared with other released tools, SOAPfuse achieves higher detection efficiency and consumed less computing resources. We applied SOAPfuse to RNA-Seq data from two bladder cancer cell lines, and confirmed 15 fusion transcripts, including several novel events common to both cell lines. SOAPfuse is available at http://soap.genomics.org.cn/soapfuse.html.

Journal ArticleDOI
TL;DR: The article at hand reviews the failure mechanisms, fault models, diagnosis techniques, and fault-tolerance methods in on-chip networks, and surveys and summarizes the research of the last ten years.
Abstract: Networks-on-Chip constitute the interconnection architecture of future, massively parallel multiprocessors that assemble hundreds to thousands of processing cores on a single chip. Their integration is enabled by ongoing miniaturization of chip manufacturing technologies following Moore's Law. It comes with the downside of the circuit elements' increased susceptibility to failure. Research on fault-tolerant Networks-on-Chip tries to mitigate partial failure and its effect on network performance and reliability by exploiting various forms of redundancy at the suitable network layers. The article at hand reviews the failure mechanisms, fault models, diagnosis techniques, and fault-tolerance methods in on-chip networks, and surveys and summarizes the research of the last ten years. It is structured along three communication layers: the data link, the network, and the transport layers. The most important results are summarized and open research problems and challenges are highlighted to guide future research on this topic.

Journal ArticleDOI
TL;DR: A novel hybrid brain-computer interface (BCI) approach by incorporating the steady-state visual evoked potential (SSVEP) into the conventional P300 paradigm and designing a periodic stimuli mechanism and superimposed it onto the P300 stimuli to increase the difference between the symbols in the same row or column.
Abstract: Objective Although extensive studies have shown improvement in spelling accuracy, the conventional P300 speller often exhibits errors, which occur in almost the same row or column relative to the target To address this issue, we propose a novel hybrid brain–computer interface (BCI) approach by incorporating the steady-state visual evoked potential (SSVEP) into the conventional P300 paradigm Approach We designed a periodic stimuli mechanism and superimposed it onto the P300 stimuli to increase the difference between the symbols in the same row or column Furthermore, we integrated the random flashings and periodic flickers to simultaneously evoke the P300 and SSVEP, respectively Finally, we developed a hybrid detection mechanism based on the P300 and SSVEP in which the target symbols are detected by the fusion of three-dimensional, time-frequency features Main results The results obtained from 12 healthy subjects show that an online classification accuracy of 9385% and information transfer rate of 5644 bit/min were achieved using the proposed BCI speller in only a single trial Specifically, 5 of the 12 subjects exhibited an information transfer rate of 6356 bit/min with an accuracy of 100% Significance The pilot studies suggested that the proposed BCI speller could achieve a better and more stable system performance compared with the conventional P300 speller, and it is promising for achieving quick spelling in stimulus-driven BCI applications

Journal ArticleDOI
TL;DR: An optimization-based coarse alignment approach that uses GPS position/velocity as input, founded on the newly-derived velocity/position integration formulae is proposed, and can serve as a nice coarse in-flight alignment without any prior attitude information for the subsequent fine Kalman alignment.
Abstract: The in-flight alignment is a critical stage for airborne inertial navigation system/Global Positioning System (INS/GPS) applications. The alignment task is usually carried out by the Kalman filtering technique that necessitates a good initial attitude to obtain a satisfying performance. Due to the airborne dynamics, the in-flight alignment is much more difficult than the alignment on the ground. An optimization-based coarse alignment approach that uses GPS position/velocity as input, founded on the newly-derived velocity/position integration formulae is proposed. Simulation and flight test results show that, with the GPS lever arm well handled, it is potentially able to yield the initial heading up to 1 deg accuracy in 10 s. It can serve as a nice coarse in-flight alignment without any prior attitude information for the subsequent fine Kalman alignment. The approach can also be applied to other applications that require aligning the INS on the run.

Journal ArticleDOI
TL;DR: A multi-objective evolutionary algorithm to address robust scheduling for a flexible job-shop scheduling problem with random machine breakdowns and results indicate that the first suggested surrogate measure performs better for small cases, while the second surrogate measure performing better for both small and relatively large cases.

Journal ArticleDOI
TL;DR: Performance comparison with classical brute-force image registration method reveals that the proposed quantum algorithm can achieve a quartic speedup.
Abstract: The power of quantum mechanics has been extensively exploited to meet the high computational requirement of classical image processing. However, existing quantum image models can only represent the images sampled in Cartesian coordinates. In this paper, quantum log-polar image (QUALPI), a novel quantum image representation is proposed for the storage and processing of images sampled in log-polar coordinates. In QUALPI, all the pixels of a QUALPI are stored in a normalized superposition and can be operated on simultaneously. A QUALPI can be constructed from a classical image via a preparation whose complexity is approximately linear in the image size. Some common geometric transformations, such as symmetry transformation, rotation, etc., can be performed conveniently with QUALPI. Based on these geometric transformations, a fast rotation-invariant quantum image registration algorithm is designed for log-polar images. Performance comparison with classical brute-force image registration method reveals that our quantum algorithm can achieve a quartic speedup.

Journal ArticleDOI
TL;DR: It is shown that Eve can simulate this fluctuation of the local oscillator (LO) to hide her Gaussian collective attack by reducing the intensity of the LO, which opens a loophole for Eve to intercept the secret key.
Abstract: We consider the security of practical continuous-variable quantum-key-distribution implementation with the local oscillator (LO) fluctuating in time, which opens a loophole for Eve to intercept the secret key. We show that Eve can simulate this fluctuation to hide her Gaussian collective attack by reducing the intensity of the LO. Numerical simulations demonstrate that if Bob does not monitor the LO intensity and does not scale his measurements with the instantaneous intensity values of LO, the secret key rate will be compromised severely.

Journal ArticleDOI
TL;DR: In this paper, the behavior of one-way square reinforced concrete (RC) slabs subjected to a blast load through experiments and numerical simulations is investigated and different damage levels and modes are observed.

Journal ArticleDOI
01 Sep 2013-Carbon
TL;DR: In this article, the conversion of graphene oxide into BCN hybrid nanosheets by reaction with boric acid and urea at 900°C, during which boron and nitrogen atoms are incorporated into the graphene atomic sheets.

Journal ArticleDOI
TL;DR: A novel technique to define the LRF by calculating the scatter matrix of all points lying on the local surface by rotationally projecting the neighboring points of a feature point onto 2D planes and calculating a set of statistics of the distribution of these projected points.
Abstract: Recognizing 3D objects in the presence of noise, varying mesh resolution, occlusion and clutter is a very challenging task. This paper presents a novel method named Rotational Projection Statistics (RoPS). It has three major modules: Local Reference Frame (LRF) definition, RoPS feature description and 3D object recognition. We propose a novel technique to define the LRF by calculating the scatter matrix of all points lying on the local surface. RoPS feature descriptors are obtained by rotationally projecting the neighboring points of a feature point onto 2D planes and calculating a set of statistics (including low-order central moments and entropy) of the distribution of these projected points. Using the proposed LRF and RoPS descriptor, we present a hierarchical 3D object recognition algorithm. The performance of the proposed LRF, RoPS descriptor and object recognition algorithm was rigorously tested on a number of popular and publicly available datasets. Our proposed techniques exhibited superior performance compared to existing techniques. We also showed that our method is robust with respect to noise and varying mesh resolution. Our RoPS based algorithm achieved recognition rates of 100%, 98.9%, 95.4% and 96.0% respectively when tested on the Bologna, UWA, Queen's and Ca' Foscari Venezia Datasets.

Journal ArticleDOI
TL;DR: In this article, the mechanical and electronic properties of graphyne and its family under strain were investigated and it was found that the inplane stiffness decreases with increasing the number of acetylenic linkages.
Abstract: Using the first-principles calculations, we investigate the mechanical and electronic properties of graphyne and its family under strain. It is found that the in-plane stiffness decreases with increasing the number of acetylenic linkages, which can be characterized by a simple scaling law. The band gap of the graphyne family is found to be modified by applying strain through various approaches. While homogeneous tensile strain leads to an increase in the band gap, the homogeneous compressive strain as well as uniaxial tensile and compressive strains within the imposed range induce a reduction in it. Both graphyne and graphyne-3 under different tensile strains possess direct gaps at either M or S point of Brillouin zone, whereas the band gaps of graphdiyne and graphyne-4 are always direct and located at the Γ point, irrespective of strain types. Our study suggests a potential direction for fabrication of novel strain-tunable nanoelectronic and optoelectronic devices.

Journal ArticleDOI
TL;DR: In this paper, the authors present a design of locally resonant (LR) beams using periodic arrays of beam-like resonators (or beamlike vibration absorbers) attached to a thin homogeneous beam.
Abstract: In this paper, we present a design of locally resonant (LR) beams using periodic arrays of beam-like resonators (or beam-like vibration absorbers) attached to a thin homogeneous beam. The main purpose of this work is twofold: (i) providing a theoretical characterization of the proposed LR beams, including the band gap behavior of infinite systems and the vibration transmittance of finite structures, and (ii) providing experimental evidence of the associated band gap properties, especially the coexistence of LR and Bragg band gaps, and their evolution with tuned local resonance. For the first purpose, an analytical method based on the spectral element formulations is presented, and then an in-depth numerical study is performed to examine the band gap effects. In particular, explicit formulas are provided to enable an exact calculation of band gaps and an approximate prediction of band gap edges. For the second purpose, we fabricate several LR beam specimens by mounting 16 equally spaced resonators onto a free-free host beam. These specimens use the same host beam, but the resonance frequencies of the resonators on each beam are different. We further measure the vibration transmittances of these specimens, which give evidence of three interesting band gap phenomena: (i) transition between LR and Bragg band gaps; (ii) near-coupling effect of the local resonance and Bragg scattering; and (iii) resonance frequency of local resonators outside of the LR band gap. [DOI: 10.1115/1.4024214]

Journal ArticleDOI
TL;DR: In this article, the solid electrolyte interphase on the lithium electrode cycled with an electrolyte solution with polysulfides is investigated by a series of measurement within symmetrical cells.

Journal ArticleDOI
TL;DR: In this article, the effect of the swept angle, the ramp angle and the length of the step on the performance of the cantilevered ramp injector has been investigated numerically, and the predicted injectant mole fraction and static pressure profiles have been compared with the available experimental data in the open literature.

Journal ArticleDOI
TL;DR: This work probes the transient changes in the absorption of an isolated attosecond extreme ultraviolet (XUV) pulse by helium atoms in the presence of a delayed, few-cycle near infrared (NIR) laser pulse, which uncovers absorption structures corresponding to laser-induced “virtual” intermediate states in the two-color two-photon (X UV+NIR+N IR) and three- photon ( XUV-NIR-Nir) absorption process.
Abstract: Understanding and controlling the dynamic evolution of electrons in matter is among the most fundamental goals of attosecond science. While the most exotic behaviors can be found in complex systems, fast electron dynamics can be studied at the fundamental level in atomic systems, using moderately intense (≲103 W/cm2) lasers to control the electronic structure in proof-of-principle experiments. Here, we probe the transient changes in the absorption of an isolated attosecond extreme ultraviolet (XUV) pulse by helium atoms in the presence of a delayed, few-cycle near infrared (NIR) laser pulse, which uncovers absorption structures corresponding to laser-induced “virtual” intermediate states in the two-color two-photon (XUV+NIR) and three-photon (XUV+NIR+NIR) absorption process. These previously unobserved absorption structures are modulated on half-cycle (~1.3 fs) and quarter-cycle (~0.6 fs) timescales, resulting from quantum optical interference in the laser-driven atom.